欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2017-2018学年高中数学北师大版必修3教学案:第三章 §2 2.1 古典概型的特征和概率计算公式 .doc

    • 资源ID:2627354       资源大小:329KB        全文页数:9页
    • 资源格式: DOC        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2017-2018学年高中数学北师大版必修3教学案:第三章 §2 2.1 古典概型的特征和概率计算公式 .doc

    21古典概型的特征和概率计算公式预习课本P130133,思考并完成以下问题(1)古典概型的定义是什么?(2)古典概型的概率公式是什么?1古典概型的定义如果一个试验满足:(1)试验的所有可能结果只有有限个,每次试验只出现其中的一个结果;(2)每一个试验结果出现的可能性相同我们把具有这样两个特征的随机试验的数学模型称为古典概型(古典的概率模型)2古典概型的概率公式对于古典概型,如果试验的所有可能结果(基本事件数)为n,随机事件A包含的基本事件数为m,那么事件A的概率规定为P(A).点睛在一次试验中可能出现的每一个结果称为基本事件,它们是试验中不能再分的最简单的随机事件例如,掷一枚骰子,出现“1点”“2点”“3点”“4点”“5点”“6点”共6个结果,就是该随机试验的6个基本事件1一个家庭有两个小孩,则所有的基本事件是()A(男,女),(男,男),(女,女)B(男,女),(女,男)C(男,男),(男,女),(女,男),(女,女)D(男,男),(女,女)解析:选C用坐标法表示:将第一个小孩的性别放在横坐标位置,第二个小孩的性别放在纵坐标位置,可得4个基本事件(男,男),(男,女),(女,男),(女,女)2下列试验是古典概型的为()从6名同学中选出4人参加数学竞赛,每人被选中的可能性大小;同时掷两颗骰子,点数和为7的概率;近三天中有一天降雨的概率;10人站成一排,其中甲、乙相邻的概率;ABC D解析:选C是古典概型,因为符合古典概型的定义和特点不是古典概型,因为不符合等可能性,受多方面因素影响3从100台电脑中任抽5台进行质量检测,每台电脑被抽到的概率是()A.B.C. D.解析:选D每台电脑被抽到的概率为.4从1,2,3,4中随机取出两个数,则其和为奇数的概率为_解析:不同的取法包括(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),共6个基本事件,每个基本事件发生的可能性相同,因此是古典概型和为奇数包括(1,2),(1,4),(2,3),(3,4),共4个基本事件,故所求概率为.答案:古典概型的判定典例下列概率模型是古典概型吗?为什么?(1)从区间1,10内任意取出一个实数,求取到实数2的概率;(2)向上抛掷一枚不均匀的旧硬币,求正面朝上的概率;(3)从1,2,3,100这100个整数中任意取出一个整数,求取到偶数的概率解(1)不是古典概型,因为区间1,10中有无限多个实数,取出的那个实数有无限多种结果,与古典概型定义中“所有可能结果只有有限个”矛盾(2)不是古典概型,因为硬币不均匀导致“正面向上”与“反面向上”的概率不相等,与古典概型定义中“每一个试验结果出现的可能性相同”矛盾(3)是古典概型,因为在试验中所有可能出现的结果是有限的,而且每个整数被抽到的可能性相等只有同时满足有限性和等可能性这两个条件的试验才是古典概型,两个条件只要有一个不满足就不是古典概型活学活用下列随机事件:某射手射击一次,可能命中0环,1环,2环,10环;一个小组有男生5人,女生3人,从中任选1人进行活动汇报;一只使用中的灯泡寿命长短;抛出一枚质地均匀的硬币,观察其出现正面或反面的情况;中秋节前夕,某市工商部门调查辖区内某品牌的月饼质量,给该品牌月饼评“优”或“差”这些事件中,属于古典概型的有_解析:题号判断原因分析不属于命中0环,1环,2环,10环的概率不一定相同属于任选1人与学生的性别无关,仍是等可能的不属于灯泡的寿命是任何一个非负实数,有无限多种可能属于该试验结果只有“正”“反”两种,且机会均等不属于该品牌月饼评“优”与“差”的概率不一定相同答案:古典概型的概率计算典例抛掷两粒均匀的骰子,求:(1)点数之和为5的概率;(2)点数之和为7的概率;(3)出现两个4点的概率解在抛掷两粒均匀的骰子的试验中,每粒骰子均可出现1点,2点,6点,共6种结果两粒骰子出现的点数可以用有序实数对(x,y)来表示,它与直角坐标系内的一个点对应,则所有的基本事件包括:(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个(1)记“点数之和为5”为事件A,从图中可以看到事件A包含的基本事件数共有4个:(1,4),(2,3),(3,2),(4,1),所以P(A).(2)记“点数之和为7”为事件B,从图中可以看到事件B包含的基本事件数共有6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6),所以P(B).(3)记“出现两个4点”为事件C,则从图中可以看到事件C包含的基本事件数只有1个:(4,4),所以P(C).求解古典概型的概率“四步”法活学活用先后抛掷均匀的壹分、贰分、伍分硬币各一次(1)一共可能出现多少种结果?(2)出现“2枚正面朝上,1枚反面朝上”的结果有多少种?(3)出现“2枚正面朝上,1枚反面朝上”的概率是多少?解:(1)先后抛掷壹分、贰分、伍分硬币时,可能出现的结果共有8种,即(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反)(2)用A表示事件“2枚正面朝上,1枚反面朝上”,所有结果有3种,即(正,正,反),(正,反,正),(反,正,正)(3)因为每种结果出现的可能性相等,所以事件A的概率P(A).层级一学业水平达标1某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为()A.B.C.D.解析:选B所有基本事件为:123,132,213,231,312,321.其中从左到右或从右到左恰好为第1,2,3册包含2个基本事件,P.故选B.2从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是()A.B.C. D.解析:选D个位数与十位数之和为奇数的两位数一共有45个,其中个位数为0的有5个,概率为.3从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为()A. B.C. D.解析:选A从1,2,3,4这四个数字中,任取两个不同的数字,可构成12个两位数:12,13,14,21,23,24,31,32,34,41,42,43,其中大于30的有:31,32,34,41,42,43共6个,所以所得两位数大于30的概率为P.4从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于_解析:从3男3女中选出2名同学,共有以下15种情况:(男1,男2),(男1,男3),(男2,男3),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(男3,女1),(男3,女2),(男3,女3),(女1,女2),(女1,女3),(女2,女3),其中2名都是女同学的有3种情况,故所求的概率P.答案:层级二应试能力达标1两个骰子的点数分别为b,c,则方程x2bxc0有两个实根的概率为()A. B.C. D.解析:选C(b,c)共有36个结果,方程有解,则b24c0,b24c,满足条件的数记为(b2,4c),共有(4,4),(9,4),(9,8),(16,4),(16,8),(16,12),(16,16),(25,4),(25,8),(25,12),(25,16),(25,20),(25,24),(36,4),(36,8),(36,12),(36,16),(36,20),(36,24),19个结果,P.2将一个各个面上涂有颜色的正方体锯成27个同样大小的小正方体,从中任取一个小正方体,其中恰有3面涂有颜色的概率为()A. B.C. D.解析:选B在这27个小正方体中,只有原正方体的8个顶点所对应的小正方体的3面是涂色的,故概率P.3古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为()A. B.C. D.解析:选C从五种不同属性的物质中随机抽取两种,出现的情况有:(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木,土),(水,火),(水,土),(火,土)共10种等可能情况,其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为.4袋中共有6个除了颜色外完全相同的球,其中有1个红球、2个白球和3个黑球从袋中任取两球,两球颜色为一白一黑的概率等于()A. B.C. D.解析:选B袋中的1个红球、2个白球和3个黑球分别记为a,b1,b2,c1,c2,c3.从袋中任取两球有a,b1,a,b2,a,c1,a,c2,a,c3,b1,b2,b1,c1,b1,c2,b1,c3,b2,c1,b2,c2,b2,c3,c1,c2,c1,c3,c2,c3,共15个基本事件其中满足两球颜色为一白一黑的有b1,c1,b1,c2,b1,c3,b2,c1,b2,c2,b2,c3,共6个基本事件所以所求事件的概率为.5设a,b随机取自集合1,2,3,则直线axby30与圆x2y21有公共点的概率是_解析:将a,b的取值记为(a,b),则有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),共9种可能当直线与圆有公共点时,可得1,从而符合条件的有(1,3),(2,3),(3,1),(3,2),(3,3),共5种可能,故所求概率为.答案:6在5瓶饮料中,有2瓶已过了保质期,从中任取2瓶,取到的全是已过保质期的饮料的概率为_解析:设过保质期的2瓶记为a,b,没过保质期的3瓶用1,2,3表示,试验的结果为:(1,2),(1,3),(1,a),(1,b),(2,3),(2,a),(2,b),(3,a),(3,b),(a,b)共10种结果,2瓶都过保质期的结果只有1个,P.答案:7从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是_解析:从四条线段中任取三条有4种取法:(2,3,4),(2,3,5),(2,4,5),(3,4,5)其中能构成三角形的取法有3种:(2,3,4),(2,4,5),(3,4,5),故所求概率为.答案:8为迎接2016奥运会,某班开展了一次“体育知识竞赛”,竞赛分初赛和决赛两个阶段进行,在初赛后,把成绩(满分为100分,分数均为整数)进行统计,制成如下的频率分布表:序号分组(分数段)频数(人数)频率10,60)a0.1260,75)150.3375,90)25b490,100cd合计501(1)求a,b,c,d的值;(2)若得分在90,100之间的有机会进入决赛,已知其中男女比例为23,如果一等奖只有两名,求获得一等奖的全部为女生的概率解:(1)a500.15,b0.5,c50515255,d10.10.30.50.1.(2)把得分在90,100之间的五名学生分别记为男1,男2,女1,女2,女3.事件“一等奖只有两名”包含的所有事件为(男1,男2),(男1,女1),(男1,女2),(男1,女3),(男2,女1),(男2,女2),(男2,女3),(女1,女2),(女1,女3),(女2,女3),共10个基本事件;事件“获得一等奖的全部为女生”包含(女1,女2),(女1,女3),(女2,女3),共3个基本事件所以,获得一等奖的全部为女生的概率为P.9甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数则甲赢,否则乙赢(1)若以A表示事件“和为6”,求P(A);(2)若以B表示事件“和大于4而小于9”,求P(B);(3)这种游戏公平吗?试说明理由解:将所有可能情况列表如下:甲乙123451(1,1)(1,2)(1,3)(1,4)(1,5)2(2,1)(2,2)(2,3)(2,4)(2,5)3(3,1)(3,2)(3,3)(3,4)(3,5)4(4,1)(4,2)(4,3)(4,4)(4,5)5(5,1)(5,2)(5,3)(5,4)(5,5)由上表可知,该试验共包括25个等可能发生的基本事件,属于古典概型(1)“和为6”的结果有:(1,5),(2,4),(3,3),(4,2),(5,1),共5种结果,故所求的概率为.(2)“和大于4而小于9”包含了(1,4),(1,5),(2,3),(2,4),(2,5),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(5,1),(5,2),(5,3),共16个基本事件,所以P(B).(3)这种游戏不公平因为“和为偶数”包括13个基本事件,即甲赢的概率为,乙赢的概率为,所以它不公平

    注意事项

    本文(2017-2018学年高中数学北师大版必修3教学案:第三章 §2 2.1 古典概型的特征和概率计算公式 .doc)为本站会员(荣***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开