欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    第02讲 四边形综合(二)(学生版)A4-精品文档资料整理.docx

    • 资源ID:26411037       资源大小:1.07MB        全文页数:12页
    • 资源格式: DOCX        下载积分:10.8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要10.8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    第02讲 四边形综合(二)(学生版)A4-精品文档资料整理.docx

    初中数学 高斯教育学科教师辅导讲义学员姓名:年 级:辅导科目:学科教师:五块石1上课时间授课主题第02讲 四边形综合(二)知识图谱错题回顾顾题回顾四边形综合(二)知识精讲一四边形与动点问题动点问题分析的一般方法:1确定图形中的定点、动点;2分析运动原因; 3分析运动过程,确定动点的运动轨迹;4寻找临界情况并计算.三点剖析一考点:四边形与动点问题二重难点:四边形与动点问题综合及计算三易错点:动点运动过程分析错误题模精讲题模一:四边形与动点问题例1.1.1如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=6cm,BD=8cm,动点P,Q分别从点B,D同时出发,运动速度均为1cm/s,点P沿BCD运动,到点D停止,点Q沿DOB运动,到点O停止1s后继续运动,到点B停止,连接AP,AQ,PQ设APQ的面积为y(cm2)(这里规定:线段是面积0的几何图形),点P的运动时间为x(s)(1)填空:AB=_cm,AB与CD之间的距离为_cm;(2)当4x10时,求y与x之间的函数解析式;(3)直接写出在整个运动过程中,使PQ与菱形ABCD一边平行的所有x的值例1.1.2如图1,已知B点坐标是(6,6),BAx轴于A,BCy轴于C,D在线段OA上,E在y轴的正半轴上,DEBD,M是DE中点,且M在OB上(1)点M的坐标是(_,_),DE=_;(2)小明在研究动点问题时发现,如果有两点分别在两条互相垂直的直线上做匀速运动,连接这两点所得线段的中点将在同一条直线上运动,利用这一事实解答下列问题,如图2,如果一动点F从点B出发以每秒1个单位长度的速度向点A运动,同时有一点G从点D出发以每秒个单位长度的速度向点O运动,点H从点E开始沿y轴正方向自由滑动,并始终保持GH=DE,P为FG的中点,Q为GH的中点,F与G两个点分别运动到各自终点时停止运动,分别求出在运动过程中点P、Q运动的路线长(3)连接PQ,求当运动多少秒时,PQ最小,最小值是多少?例1.1.3如图,直角梯形ABCD中,ABDC,DAB=90°,AD=2DC=4,AB=6动点M以每秒1个单位长的速度,从点A沿线段AB向点B运动;同时点P以相同的速度,从点C沿折线CDA向点A运动当点M到达点B时,两点同时停止运动过点M作直线lAD,与线段CD的交点为E,与折线ACB的交点为Q点M运动的时间为t(秒)(1)当t=0.5时,求线段QM的长;(2)当0t2时,如果以C、P、Q为顶点的三角形为直角三角形,求t的值;(3)当t2时,连接PQ交线段AC于点R请探究是否为定值?若是,试求这个定值;若不是,请说明理由例1.1.4如图,正方形ABCD中,点A,B的坐标分别为(0,10),(8,4),点C在第一象限动点P在正方形ABCD的边上,从点A出发沿ABCDA匀速运动,同时动点Q以相同的速度在x轴正半轴上运动,当点P到达A点时,两点同时停止运动,设运动的时间为t秒(1)当P点在边AB上运动时点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中,设OPQ的面积为S,求S与t的函数关系式并写出自变量的取值范围(4)如果点P、Q保持原速度不变,当点P沿ABCD匀速运动时,OP与PQ能否相等?若能,写出所有符合条件的t的值;若不能,请说明理由随堂练习随练1.1阅读材料如图1,若点P是O外的一点,线段PO交O于点A,则PA长是点P与O上各点之间的最短距离.图1 图2证明:延长PO交O于点B,显然PB>PA.如图2,在O上任取一点C(与点A,B不重合),连结PC,OC.PA长是点P与O上各点之间的最短距离.由此可以得到真命题:圆外一点与圆上各点之间的最短距离是这点到圆心的距离与半径的差.请用上述真命题解决下列问题(1)如图3,在RtABC中,ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP长的最小值是 图3(2)如图4,在边长为2的菱形中,=60°,是边的中点,点是边上一动点,将沿所在的直线翻折得到,连接,求线段AM的长度;求线段长的最小值.图4随练1.2在学习了正方形后,数学小组的同学对正方形进行了探究,发现:(1)如图1,在正方形ABCD中,点E为BC边上任意一点(点E不与B、C重合),点F在线段AE上,过点F的直线MNAE,分别交AB、CD于点M、N此时,有结论AE=MN,请进行证明;(2)如图2:当点F为AE中点时,其他条件不变,连接正方形的对角线BD,MN 与BD交于点G,连接BF,此时有结论:BF=FG,请利用图2做出证明(3)如图3:当点E为直线BC上的动点时,如果(2)中的其他条件不变,直线MN分别交直线AB、CD于点M、N,请你直接写出线段AE与MN之间的数量关系、线段BF与FG之间的数量关系随练1.3如图,梯形ABCD中,ADBC,BAD=90°,CEAD于点E,AD=8cm,BC=4cm,AB=5cm从初始时刻开始,动点P,Q 分别从点A,B同时出发,运动速度均为1cm/s,动点P沿ABCE的方向运动,到点E停止;动点Q沿BCED的方向运动,到点D停止,设运动时间为xs,PAQ的面积为ycm2,(这里规定:线段是面积为0的三角形)解答下列问题:(1)当x=2s时,y=_cm2;当x=s时,y=_cm2(2)当5x14 时,求y与x之间的函数关系式(3)当动点P在线段BC上运动时,求出S梯形ABCD时x的值(4)直接写出在整个运动过程中,使PQ与四边形ABCE的对角线平行的所有x的值随练1.4已知直角梯形OABC在如图所示的平面直角坐标系中,动点M从A点出发,以每秒钟1个单位长度的速度沿AB向点B运动,同时动点N从C点出发,以每秒2个单位长度的速度沿CO向O点运动,当其中一个动点运动到终点时,两个动点都停止运动ABOC备用图xyABOCMNxy(1)求B点坐标;(2)设运动时间为t秒当t为何值时,四边形OAMN的面积是梯形OABC面积的一半;当t为何值时,四边形OAMN的面积最小,并求出最小面积;若另有一动点P,在点M、N运动的同时,也从点A出发沿AO运动在的条件下,D的长度也刚好最小求动点P的速度随练1.5某数学兴趣小组对线段上的动点问题进行探究,已知AB=8问题思考:如图1,点P为线段AB上的一个动点,分别以AP、BP为边在同侧作正方形APDC、BPEF(1)当点P运动时,这两个正方形的面积之和是定值吗?若是,请求出;若不是,请求出这两个正方形面积之和的最小值(2)分别连接AD、DF、AF,AF交DP于点K,当点P运动时,在APK、ADK、DFK中,是否存在两个面积始终相等的三角形?请说明理由问题拓展:(3)如图2,以AB为边作正方形ABCD,动点P、Q在正方形ABCD的边上运动,且PQ=8若点P从点A出发,沿ABCD的线路,向点D运动,求点P从A到D的运动过程中,PQ的中点O所经过的路径的长(4)如图3,在“问题思考”中,若点M、N是线段AB上的两点,且AM=BN=1,点G、H分别是边CD、EF的中点,请直接写出点P从M到N的运动过程中,GH的中点O所经过的路径的长及OM+OB的最小值随练1.6阅读下列材料:已知:如图1,在中,P为AC边上的一动点,以PB,PA为边构造,求对角线PQ的最小值及此时的值是多少ABCP图1QCBAP图2在解决这个问题时,小明联想到在学习平行线间的距离时所了解的知识:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短进而,小明构造出了如图2的辅助线,并求得PQ的最小值为3参考小明的做法,解决以下问题:(1)继续完成阅读材料中的问题:当PQ的长度最小时,_;(2)如图3,延长PA到点E,使(n为大于0的常数)以PE,PB为边作,那么对角线PQ的最小值为_,此时_;AEBQCPAEPBCQ图3图4(3)如图4,如果P为AB边上的一动点,延长PA到点E,使(n为大于0的常数),以PE,PC为边作,那么对角线PQ的最小值为_,此时_随练1.7在中,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转得到线段PQ(1)若且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出的度数;M(P)QCBA图1APMCBQ图2(2)在图2中,点P不与点B,M重合,线段CQ的延长线与射线BM交于点D,猜想的大小(用含的代数式表示),并加以证明;(3)对于适当大小的,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且,请直接写出的范围随练1.8如图1,已知B点坐标是(6,6),BAx轴于A,BCy轴于C,D在线段OA上,E在y轴的正半轴上,DEBD,M是DE中点,且M在OB上(1)点M的坐标是(_,_),DE=_;(2)小明在研究动点问题时发现,如果有两点分别在两条互相垂直的直线上做匀速运动,连接这两点所得线段的中点将在同一条直线上运动,利用这一事实解答下列问题,如图2,如果一动点F从点B出发以每秒1个单位长度的速度向点A运动,同时有一点G从点D出发以每秒个单位长度的速度向点O运动,点H从点E开始沿y轴正方向自由滑动,并始终保持GH=DE,P为FG的中点,Q为GH的中点,F与G两个点分别运动到各自终点时停止运动,分别求出在运动过程中点P、Q运动的路线长(3)连接PQ,求当运动多少秒时,PQ最小,最小值是多少?自我总结 课后作业作业1如图,长方形OABC的顶点A、C、O都在坐标轴上,点B的坐标为(9,4),E为BC边上一点,CE=6(1)求点E的坐标和ABE的周长;(2)若P是OA上的一个动点,它以每秒1个单位长度的速度从点O出发沿射线OA运动,设点P运动的时间为t秒(t0)当t为何值时,PAE的面积等于PCE的面积的一半;当t为何值时,PAE为直角三角形作业2如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿AOD和DA运动,当点N到达点A时,M、N同时停止运动设运动时间为t秒(1)求菱形ABCD的周长;(2)记DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得DPO=DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由作业3如图,P是边长为1的正方形ABCD对角线BD上一动点(P与B、D不重合),APE=90°,且点E在BC边上,AE交BD于点F(1)求证:PABPCB;PE=PC;(2)在点P的运动过程中,的值是否改变?若不变,求出它的值;若改变,请说明理由;(3)设DP=x,当x为何值时,AEPC,并判断此时四边形PAFC的形状作业4如图,在平面直角坐标系中,点A,B的坐标分别为(-3,0),(0,6)动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从点B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒(1)当点C运动到线段OB的中点时,求t的值及点E的坐标;(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形;(3)在线段PE上取点F,使PF=1,过点F作MNPE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中,设PCOD的面积为S当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S的取值范围作业5如图,AC是正方形ABCD的对角线点E为射线CB上一个动点(点E不与点C,B重合),连接AE,点F在直线AC上,且EF=AE(1)点E在线段CB上,如图1所示;若BAE=10°,求CEF的度数;用等式表示线段CD,CE,CF之间的数量关系,并证明(2)如图2,点E在线段CB的延长线上;请你依题意补全图2,并直接写出线段CD,CE,CF之间的数量关系作业6已知:四边形ABCD中,ADBC,点E是射线CD上的一个动点(与C、D不重合),将ADE绕点A顺时针旋转后,得到ABE',连接EE'(1)如图1, ;(2)如图2,如果将直线AE绕点A顺时针旋转后交直线BC于点F,过点E作EMAD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;(3)如图3,在(2)的条件下,如果, ,求ME的长 作业7【试题背景】已知:lmnk,平行线l与m、m与n、n与k之间的距离分别为d1、d2、d3,且d1=d3=1,d2=2我们把四个顶点分别在l、m、n、k这四条平行线上的四边形称为“格线四边形”【探究1】(1)如图1,正方形ABCD为“格线四边形”,BEl于点E,BE的反向延长线交直线k于点F,求正方形ABCD的边长【探究2】(2)矩形ABCD为“格线四边形”,其长:宽=2:1,则矩形ABCD的宽为_(直接写出结果即可)【探究3】如图2,菱形ABCD为“格线四边形”且ADC=60°,AEF是等边三角形,AEk于点E,AFD=90°,直线DF分别交直线l、k于点G、点M求证:EC=DF【拓展】(4)如图3,lk,等边ABC的顶点A、B分别落在直线l、k上,ABk于点B,且AB=4,ACD=90°,直线CD分别交直线l、k于点G、点M,点D、点E分别是线段GM、BM上的动点,且始终保持AD=AE,DHl于点H猜想:DH在什么范围内,BCDE?并说明此时BCDE的理由作业8如图,在RtABC中,C=90°,AC=6,BC=8动点P从点A开始沿折线ACCBBA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5 个单位直线l从与AC重合的位置开始,以每秒单位的速度沿CB方向平行移动,即移动过程中保持l/AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P和直线l同时停止运动(1)当t = 5秒时,点P走过的路径长为_;当t =_秒时,点P与点E重合;(2)当点P在AC边上运动时,将PEF绕点E逆时针旋转,使得点P的对应点M落在E点上,点F的对应点记为点N,当ENAB时,求t的值;(3)当点P在折线ACCBBA上运动时,作点P关于直线EF的对称点,记为点Q在点P与直线l运动的过程中,若形成的四边形PEQF为菱形,请直接写出t的值作业9如图(1),(2)所示,矩形ABCD的边长AB=6,BC=4,点F在DC上,DF=2动点M、N分别从点D、B同时出发,沿射线DA、线段BA向点A的方向运动(点M可运动到DA的延长线上),当动点N运动到点A时,M、N两点同时停止运动连接FM、FN,当F、N、M不在同一直线时,可得FMN,过FMN三边的中点作PWQ设动点M、N的速度都是1个单位/秒,M、N运动的时间为x秒试解答下列问题:(1)说明FMNQWP;(2)设0x4(即M从D到A运动的时间段)试问x为何值时,PWQ为直角三角形?当x在何范围时,PQW不为直角三角形?(3)问当x为何值时,线段MN最短?求此时MN的值12

    注意事项

    本文(第02讲 四边形综合(二)(学生版)A4-精品文档资料整理.docx)为本站会员(安***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开