数学分析试题及标准答案解析.doc
2014 -2015学年度第二学期数学分析2A试卷 学院 班级 学号(后两位) 姓名 题号一二三四五六七八总分核分人得分一. 判断题(每小题3分,共21分)(正确者后面括号内打对勾,否则打叉) 1.若在连续,则在上的不定积分可表为( ). 2.若为连续函数,则( ). 3. 若绝对收敛,条件收敛,则必然条件收敛( ). 4. 若收敛,则必有级数收敛( ) 5. 若与均在区间I上内闭一致收敛,则也在区间I上内闭一致收敛( ). 6. 若数项级数条件收敛,则一定可以经过适当的重排使其发散于正无穷大( ). 7. 任何幂级数在其收敛区间上存在任意阶导数,并且逐项求导后得到的新幂级数收敛半径与收敛域与原幂级数相同( ).二. 单项选择题(每小题3分,共15分)1.若在上可积,则下限函数在上( )A.不连续 B. 连续 C.可微 D.不能确定 2. 若在上可积,而在上仅有有限个点处与不相等,则( ) A. 在上一定不可积; B. 在上一定可积,但是; C. 在上一定可积,并且; D. 在上的可积性不能确定. 3.级数 A.发散 B.绝对收敛 C.条件收敛 D. 不确定 4.设为任一项级数,则下列说法正确的是( ) A.若,则级数一定收敛; B. 若,则级数一定收敛; C. 若,则级数一定收敛; D. 若,则级数一定发散; 5.关于幂级数的说法正确的是( ) A. 在收敛区间上各点是绝对收敛的; B. 在收敛域上各点是绝对收敛的; C. 的和函数在收敛域上各点存在各阶导数; D. 在收敛域上是绝对并且一致收敛的;三.计算与求值(每小题5分,共10分) 1. 2. 四. 判断敛散性(每小题5分,共15分) 1. 2. 3. 五. 判别在数集D上的一致收敛性(每小题5分,共10分) 1. 2. 六已知一圆柱体的的半径为R,经过圆柱下底圆直径线并保持与底圆面 角向斜上方切割,求从圆柱体上切下的这块立体的体积。(本题满10分)七. 将一等腰三角形铁板倒立竖直置于水中(即底边在上),且上底边距水表面距离为10米,已知三角形底边长为20米,高为10米,求该三角形铁板所受的静压力。(本题满分10分)八. 证明:函数在上连续,且有连续的导函数.(本题满分9分) 2014 -2015学年度第二学期数学分析2B卷 答案 学院 班级 学号(后两位) 姓名 题号一二三四五六七八总分核分人得分一、 判断题(每小题3分,共21分,正确者括号内打对勾,否则打叉)1. 2. 3. 4. 5. 6. 7. 二.单项选择题(每小题3分,共15分) 1. B ; 2.C ; 3.A ; 4.D; 5.B三.求值与计算题(每小题5分,共10分)1.解:由于-3分 而 -4分 故由数列极限的迫敛性得: -5分2. 设 ,求解:令 得 =-2分= -4分=-5分四.判别敛散性(每小题5分,共10分) 1. 解: -3分 且 ,由柯西判别法知, 瑕积分 收敛 -5分 2. 解: 有 -2分 从而 当 -4分 由比较判别法 收敛-5分五.判别在所示区间上的一致收敛性(每小题5分,共15分) 1. 解:极限函数为-2分 又 -3分 从而故知 该函数列在D上一致收敛. -5分2. 解:因当 时,-2分而 正项级数 收敛, -4分由优级数判别法知,该函数列在D上一致收敛.-5分3. 解:易知,级数的部分和序列一致有界,-2分而 对 是单调的,又由于,-4分所以在D上一致收敛于0,从而由狄利克雷判别法可知,该级数在D上一致收敛。-5分六. 设平面区域D是由圆,抛物线及x轴所围第一象限部分,求由D绕y轴旋转一周而形成的旋转体的体积(本题满分10分)解:解方程组得圆与抛物线在第一象限的交点坐标为:, -3分则所求旋转体得体积为: -7分 =- = -10分七.现有一直径与高均为10米的圆柱形铁桶(厚度忽略不计),内中盛满水,求从中将水抽出需要做多少功?(本题满分10分) 解:以圆柱上顶面圆圆心为原点,竖直向下方向为x轴正向建立直角坐标系则分析可知做功微元为: -5分 故所求为: -8分 =1250 =12250(千焦)-10分八设是上的单调函数,证明:若与都绝对收敛,则在上绝对且一致收敛. (本题满分9分) 证明:是上的单调函数,所以有 -4分又由与都绝对收敛,所以 收敛,-7分由优级数判别法知:在上绝对且一致收敛.-2013 -2014学年度第二学期数学分析2A试卷 学院 班级 学号(后两位) 姓名 题号一二三四五六七总分核分人得分一. 判断题(每小题2分,共16分)(正确者后面括号内打对勾,否则打叉)1.若在a,b上可导,则在a,b上可积. ( )2.若函数在a,b上有无穷多个间断点,则在a,b上必不可积。 ( )3.若均收敛,则一定条件收敛。 ( )4.若在区间I上内闭一致收敛,则在区间I处处收敛( ) 5.若为正项级数(),且当 时有: ,则级数必发散。( ) 6.若以为周期,且在上可积,则的傅里叶系数为: ( ) 7.若,则 ( ) 8.幂级数在其收敛区间上一定内闭一致收敛。( )二. 单项选择题(每小题3分,共18分)1. 下列广义积分中,收敛的积分是( )A B C D 2.级数收敛是部分和有界的( )A 必要条件 B 充分条件 C充分必要条件 D 无关条件 3.正项级数收敛的充要条件是( )A. B.数列单调有界 C. 部分和数列有上界 D. 4.设则幂级数的收敛半径R=( ) A. B. C. D.5. 下列命题正确的是( )A 在绝对收敛必一致收敛B 在一致收敛必绝对收敛C 若,则在必绝对收敛D 在条件收敛必收敛6.若幂级数的收敛域为,则幂级数在上 A. 一致收敛 B. 绝对收敛 C. 连续 D.可导三. 求值或计算(每题4分,共16分)1. ;2. 3 .4.设在0,1上连续,求四.(16分)判别下列反常积分和级数的敛散性. 1.; 2. 3. ; 4.五 、判别函数序列或函数项级数在所给范围上的一致收敛性(每题5分,共10分)1. 2. ;六.应用题型(14分)1. 一容器的内表面为由绕y轴旋转而形成的旋转抛物面,其内现有水(),若再加水7(),问水位升高了多少米? 2. 把由,x轴,y轴和直线所围平面图形绕x轴旋转得一旋转体,求此旋转体的体积,并求满足条件的. 七证明题型 (10分) 已知与均在a,b上连续,且在a,b上恒有,但不恒等于,证明: 2013 -2014学年度第二学期数学分析2B试卷 学院 班级 学号(后两位) 姓名 题号一二三四五六七总分核分人得分一、 判断题(每小题2分,共18分,正确者括号内打对勾,否则打叉)1.对任何可导函数而言,成立。( )2.若函数在上连续,则必为在上的原函数。( )3.若级数收敛,必有。( )4.若,则级数发散.5.若幂级数在处收敛,则其在-2,2上一致收敛.( )6.如果在以a,b为端点的闭区间上可积,则必有.( )7.设在上有定义,则与级数同敛散.( )8.设在任子区间可积,b为的暇点,则与同敛散.( )9.设在上一致收敛,且存在,则.二.单项选择题(每小题3分,共15分)1. 函数在上可积的必要条件是( )A 连续 B 有界 C 无间断点 D 有原函数2. 下列说法正确的是( )A. 和收敛,也收敛 B. 和发散,发散C. 收敛和发散,发散D. 收敛和发散,发散3. 在收敛于,且可导,则( ) A. B. 可导 C. D. 一致收敛,则必连续 4.级数 A.发散 B.绝对收敛 C.条件收敛 D. 不确定5.幂级数的收敛域为: A.(-0.5,0.5) B.-0.5,0.5 C. D.三.求值与计算题(每小题4分,共16分)1. 2. 3. 4.四.判别敛散性(每小题4分,共16分)1.;2.3.4.五.判别在所示区间上的一致收敛性(每小题5分,共10分) 1. 2. 六.应用题型(16分) 1.试求由曲线及曲线所平面图形的面积. 2.将表达为级数形式,并确定前多少项的和作为其近似,可使之误差不超过十万分之一.7. (9分)证明:若函数项级数满足:() ;()收敛.则函数项级数在D上一致收敛.014 -2015学年度第二学期数学分析2A卷答案 三. 判断题(每小题3分,共21分)1. 2. 3. 4. 5. 6. 7. 二.单项选择题(每小题3分,共15分) B, C, C, D, A三.计算与求值( 每小题5分,共10分) 1. 解:原式= =-2分 =-3分 =-5分 2.原式= -2分 = -4分 = -5分四. 判断敛散性( 每小题5分,共15分) 1. -2分且 -3分 由柯西判别法知,收敛。-5分 2.由比式判别法 -4分 故该级数收敛. -5分 3. 解:由莱布尼兹判别法知,交错级数收敛-2分 又 知其单调且有界,-4分故由阿贝尔判别法知,级数收敛. -5分五.1. 解:极限函数为 -2分 又 -4分 故知 该函数列在D上一致收敛.-5分 2. 解:因当 时,-3分而 正项级数 收敛, -4分由优级数判别法知,该函数列在D上一致收敛.-5分六已知一圆柱体的的半径为R,由圆柱下底圆直径线并保持与底圆面 角向斜上方切割,求所切下这块立体的体积。(本题满分10分) 解:在底圆面上以所截直径线为x轴,底圆的圆心为原点示坐标系, 过x处用垂直x轴的平面取截该立体,所得直角三角形的面积为: -5分 故所求立体的体积为: -7分 = -10分七.解:建立图示坐标系(竖直方向为x轴) 则第一象限等腰边的方程为 -3分 压力微元为: 故所求为 -7分 -10分八. 证明:每一项在上连续, 又 而收敛 所以在上一致收敛,-3分故由定理结论知 在上连续,-5分再者 而收敛所以在上一致收敛,结合在上的连续性可知在上有连续的导函数. -9分 2014 -2015学年度第二学期数学分析2B试卷 学院 班级 学号(后两位) 姓名 题号一二三四五六七八总分核分人得分二、 判断题(每小题3分,共21分,正确者括号内打对勾,否则打叉)1.若为偶函数,则必为奇函数( ).2.为符号函数,则上限函数y=在上连续( ).3.若收敛,必有( ).4.若在区间I上内闭一致收敛,则在区间I上处处收敛( ).5.若在上内闭一致收敛,则在上一致收敛( ).6.若数项级数绝对收敛,则经过任意重拍后得到的新级数仍然绝对收敛,并且其和不变( ).7.若函数项级数在上的某点收敛,且在上一致收敛,则也在上一致收敛( ).二.单项选择题(每小题3分,共15分) 1. 函数是奇函数,且在上可积,则( )A B C D 2.关于积分,正确的说法是( ) A.此为普通积分 B. 此为瑕积分且瑕点为0 C. 此为瑕积分且瑕点为1 D. 此为瑕积分且瑕点为0,13.就级数()的敛散性而言,它是( ) A. 收敛的 B. 发散的 C. 仅 时收 D. 仅 时收敛 4.函数列在区间上一致收敛于0的充要条件是( ) A. B. C. D. 5.幂级数的收敛域为: A.(-0.5,0.5) B.-0.5,0.5 C. D.三.求值与计算题(每小题5分,共10分)1.2. 设 ,求四.判别敛散性(每小题5分,共10分) 1. 2. 五.判别在所示区间上的一致收敛性(每小题5分,共15分) 1. 2. 3. 六. 设平面区域D是由圆,抛物线及x轴所围第一象限部分,求由D绕y轴旋转一周而形成的旋转体的体积(本题满分10分)七.现有一直径与高均为10米的圆柱形铁桶(厚度忽略不计),内中盛满水,求从中将水抽出需要做多少功?(本题满分10分)八设是上的单调函数,证明:若与 都绝对收敛,则在上绝对且一致收敛. (本题满分9分)