高二数学下册随机事件的概率知识点讲解.doc
高二数学下册随机事件的概率知识点讲解随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件。那么同学们赶快一起来看看随机事件的概率知识点!随机事件的概念在一定的条件下所出现的某种结果叫做事件。(1)随机事件:在一定条件下可能发生也可能不发生的事件;(2)必然事件:在一定条件下必然要发生的事件;(3)不可能事件:在一定条件下不可能发生的事件。随机事件的概率事件A的概率:在大量重复进行同一试验时,事件A发生的频率总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。由定义可知0P(A)1,显然必然事件的概率是1,不可能事件的概率是0。事件间的关系(1)互斥事件:不能同时发生的两个事件叫做互斥事件;(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件;(3)包含:事件A发生时事件B一定发生,称事件A包含于事件B(或事件B包含事件A);事件间的运算(1)并事件(和事件)若某事件的发生是事件A发生或事件B发生,则此事件称为事件A与事件B的并事件。注:当A和B互斥时,事件A+B的概率满足加法公式:P(A+B)=P(A)+P(B)(A、B互斥);且有P(A+)=P(A)+P()=1。(2)交事件(积事件)若某事件的发生是事件A发生和事件B同时发生,则此事件称为事件A与事件B的交事件。古典概型(1)古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)古典概型的概率计算公式:P(A)=;一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是。如果某个事件A包含的结果有m个,那么事件A的概率P(A)=。练习题:1甲、乙两人下棋,两人和棋的概率是12,乙获胜的概率是13,则乙不输的概率是( )A.56B.23C.12 D.13解析:选A 乙不输包含两种情况:一是两人和棋,二是乙获胜,故所求概率为121356.2一个盒子内装有红球、白球、黑球三种球,其数量分别为3,2,1,从中任取两球,则互斥而不对立的两个事件为( )A至少有一个白球;都是白球B至少有一个白球;至少有一个红球C恰有一个白球;一个白球一个黑球D至少有一个白球;红球、黑球各一个解析:选D 红球、黑球各取一个,则一定取不到白球,故“至少有一个白球”“红球、黑球各一个”为互斥事件,又任取两球还包含“两个红球”这个事件,故不是对立事件3掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件AB发生的概率为( )A.13 B.12C.23 D.56解析:选C 掷一个骰子的试验有6种可能结果,依题意P(A)2613,P(B)4623,所以P(B)1P(B)12313,因为B表示“出现5点或6点”的事件,因此事件A与B互斥,从而P(AB)P(A)P(B)131323.以上就是我们给同学们整理的幂函数知识点啦!想要了解更多精彩的内容,大家可点击【原创专栏】来看第 3 页 共 3 页