高级中学函数定义域值域解析式求法全套汇编.doc
.*抽象函数定义域的类型及求法函数概念及其定义域函数的概念:设是非空数集,如果按某个确定的对应关系,使对于集合中的任意一个,在集合中都有唯一确定的数和它对应,那么就称为集合到集合的函数,记作:。其中叫自变量,的取值范围叫做函数的定义域;与的值相对应的的值叫做函数值.复合函数的定义一般地:若,又,且值域与定义域的交集不空,则函数叫的复合函数,其中叫外层函数,叫内层函数,简言之:复合函数就是:把一个函数中的自变量替换成另一个函数所得的新函数.例如: ; 复合函数即把里面的换成,问:函数和函数所表示的定义域是否相同?为什么?(不相同;原因:定义域是求的取值范围,这里和所属范围相同,导致它们定义域的范围就不同了。一、已知的定义域,求的定义域其解法是:若的定义域为,则在中,从中解得的取值范围即为的定义域例1 已知函数的定义域为,求的定义域分析:该函数是由和构成的复合函数,其中是自变量,是中间变量,由于与是同一个函数,因此这里是已知,即,求的取值范围解:的定义域为,故函数的定义域为练习1.已知的定义域为,求函数的定义域;练习2.已知的定义域为,求定义域。二、已知的定义域,求的定义域其解法是:若的定义域为,则由确定的的范围即为的定义域例1.已知函数的定义域为,求函数的定义域分析:令,则,由于与是同一函数,因此的取值范围即为的定义域解:由,得令,则,故的定义域为练习1若函数的定义域为,求函数的定义域例2.已知的定义域为,求的定义域。解 由的定义域为得,故即得定义域为,从而得到,所以故得函数的定义域为三、运算型的抽象函数求由有限个抽象函数经四则运算得到的函数的定义域,其解法是:先求出各个函数的定义域,然后再求交集例1.若的定义域为,求的定义域解:由的定义域为,则必有解得所以函数的定义域为例2已知函数定义域为是,且,求函数的定义域 解: ,又 要使函数的定义域为非空集合,必须且只需,即,这时函数的定义域为总结解题模板1.已知的定义域,求复合函数的定义域由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若的定义域为,求出中的解的范围,即为的定义域。2.已知复合函数的定义域,求的定义域方法是:若的定义域为,则由确定的范围即为的定义域。3.已知复合函数的定义域,求的定义域 结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由定义域求得的定义域,再由的定义域求得的定义域。4.已知的定义域,求四则运算型函数的定义域若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。函 数 解 析 式 的 七 种 求 法 一、 待定系数法:在已知函数解析式的构造时,可用待定系数法。例1 设是一次函数,且,求解:设 ,则 二、 配凑法:已知复合函数的表达式,求的解析式,的表达式容易配成的运算形式时,常用配凑法。但要注意所求函数的定义域不是原复合函数的定义域,而是的值域。 例2 已知 ,求 的解析式解:, 三、换元法:已知复合函数的表达式时,还可以用换元法求的解析式。与配凑法一样,要注意所换元的定义域的变化。例3 已知,求解:令,则, 四、代入法:求已知函数关于某点或者某条直线的对称函数时,一般用代入法。例4已知:函数的图象关于点对称,求的解析式解:设为上任一点,且为关于点的对称点 则,解得: ,点在上 把代入得: 整理得 五、构造方程组法:若已知的函数关系较为抽象简约,则可以对变量进行置换,设法构造方程组,通过解方程组求得函数解析式。例5 设求解 显然将换成,得 解 联立的方程组,得例6 设为偶函数,为奇函数,又试求的解析式解 为偶函数,为奇函数, 又 ,用替换得: 即 解 联立的方程组,得, 六、赋值法:当题中所给变量较多,且含有“任意”等条件时,往往可以对具有“任意性”的变量进行赋值,使问题具体化、简单化,从而求得解析式。 例7 已知:,对于任意实数x、y,等式恒成立,求解对于任意实数x、y,等式恒成立,不妨令,则有 再令 得函数解析式为:七、递推法:若题中所给条件含有某种递进关系,则可以递推得出系列关系式,然后通过迭加、迭乘或者迭代等运算求得函数解析式。例8 设是定义在上的函数,满足,对任意的自然数 都有,求 解 ,不妨令,得:,又 分别令式中的 得:将上述各式相加得:, 2.1给出下列四个图形,其中能表示从集合M到集合N的函数关系的有( )A、 0个 B、 1个 C、 2个 D、3xxxx1211122211112222yyyy3OOOO2求下列函数的定义域: (1) (2) (4) y=ax(a>0,a1) (5) y=x0 3 设函数,则 4.求下列函数的解析式: (1)已知f(x+1)=x2-3x+2,求f(x). (2)已知f(x)+2f()=3x,求f(x)的解析式反馈型题组5.(08年,全国高考题)函数的定义域为( ) A BCD6.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程看作时间的函数,其图像可能是stOAstOstOstOBCD7.(08年德州)对任意整数x,y,函数满足,若=1,那么等于 ( ) A. -1 B. 1 C. 19 D 438.已知f(x)是一次函数,且2f(x)+f(-x)=3x+1对xR恒成立,则f(x)=_.函数值域求法十一种 1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。 例1. 求函数的值域。解:显然函数的值域是: 例2. 求函数的值域。解:故函数的值域是: 2. 配方法配方法是求二次函数值域最基本的方法之一。 例3. 求函数的值域。解:将函数配方得:由二次函数的性质可知:当x=1时,当时,故函数的值域是:4,8 3. 判别式法 例4. 求函数的值域。解:原函数化为关于x的一元二次方程(1)当时,解得:(2)当y=1时,而故函数的值域为 例5. 求函数的值域。解:两边平方整理得:(1)解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间0,2上,即不能确保方程(1)有实根,由 求出的范围可能比y的实际范围大,故不能确定此函数的值域为。可以采取如下方法进一步确定原函数的值域。代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。 4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。 例6. 求函数值域。解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为: 5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。 例7. 求函数的值域。解:由原函数式可得:解得:故所求函数的值域为 例8. 求函数的值域。解:由原函数式可得:,可化为:即即解得:故函数的值域为 6. 函数单调性法 例9. 求函数的值域。解:令则在2,10上都是增函数所以在2,10上是增函数当x=2时,当x=10时,故所求函数的值域为: 例10. 求函数的值域。解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然,故原函数的值域为 7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。 例11. 求函数的值域。解:令,则又,由二次函数的性质可知当时,当时,故函数的值域为 例12. 求函数的值域。解:因即故可令故所求函数的值域为 例13. 求函数的值域。解:原函数可变形为:可令,则有当时,当时,而此时有意义。故所求函数的值域为 例14. 求函数,的值域。解:令,则由且可得:当时,当时,故所求函数的值域为。 例15. 求函数的值域。解:由,可得故可令当时,当时,故所求函数的值域为: 8. 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。 例16. 求函数的值域。解:原函数可化简得:上式可以看成数轴上点P(x)到定点A(2),间的距离之和。由上图可知,当点P在线段AB上时,当点P在线段AB的延长线或反向延长线上时,故所求函数的值域为: 例17. 求函数的值域。解:原函数可变形为:上式可看成x轴上的点到两定点的距离之和,由图可知当点P为线段与x轴的交点时,故所求函数的值域为 例18. 求函数的值域。解:将函数变形为:上式可看成定点A(3,2)到点P(x,0)的距离与定点到点的距离之差。即:由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点,则构成,根据三角形两边之差小于第三边,有即:(2)当点P恰好为直线AB与x轴的交点时,有综上所述,可知函数的值域为:注:由例17,18可知,求两距离之和时,要将函数式变形,使A、B两点在x轴的两侧,而求两距离之差时,则要使A,B两点在x轴的同侧。如:例17的A,B两点坐标分别为:(3,2),在x轴的同侧;例18的A,B两点坐标分别为(3,2),在x轴的同侧。 9. 不等式法利用基本不等式,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧。 例19. 求函数的值域。解:原函数变形为:当且仅当即当时,等号成立故原函数的值域为: 例20. 求函数的值域。解:当且仅当,即当时,等号成立。由可得:故原函数的值域为: 10. 一一映射法原理:因为在定义域上x与y是一一对应的。故两个变量中,若知道一个变量范围,就可以求另一个变量范围。 例21. 求函数的值域。解:定义域为由得故或解得故函数的值域为 11. 多种方法综合运用 例22. 求函数的值域。解:令,则(1)当时,当且仅当t=1,即时取等号,所以(2)当t=0时,y=0。综上所述,函数的值域为:注:先换元,后用不等式法 例23. 求函数的值域。解:令,则当时,当时,此时都存在,故函数的值域为注:此题先用换元法,后用配方法,然后再运用的有界性。总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法,一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。山水是一部书,枝枝叶叶的文字间,声声鸟鸣是抑扬顿挫的标点,在茂密纵深间,一条曲径,是整部书最芬芳的禅意。春风翻一页,桃花面,杏花眼,柳腰春细;夏阳读一页,蔷花满架,木槿锦绣、合欢幽香、蜀葵闲澹,一派峥嵘;秋风传一页,海棠妆欢,野菊淡姿,高远深邃;冬雪润一页,水仙临水一舞,腊梅素心磬口,向爱唱晚。