欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高级中学基本不等式经典编辑例题教学方案计划教案.doc

    • 资源ID:2648981       资源大小:383.22KB        全文页数:11页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高级中学基本不等式经典编辑例题教学方案计划教案.doc

    -!全方位教学辅导教案 学科: 数学 任课教师: 授课时间: 2012 年11 月 3 日 星期 姓 名性 别女年 级高二总课时: 第 次课教 学内 容均值不等式应用(技巧)教 学目 标1、熟悉均值不等式的应用题型2、掌握各种求最值的方法 重 点难 点重点是掌握最值应用的方法难点是不等式条件的应用教学过程课前检查与交流作业完成情况:交流与沟通针对性授课一均值不等式1.(1)若,则 (2)若,则(当且仅当时取“=”)2. (1)若,则 (2)若,则(当且仅当时取“=”)(3)若,则 (当且仅当时取“=”)3.若,则 (当且仅当时取“=”);若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)3.若,则 (当且仅当时取“=”)若,则 (当且仅当时取“=”)4.若,则(当且仅当时取“=”)注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用应用一:求最值例1:求下列函数的值域(1)y3x 2 (2)yx解题技巧:技巧一:凑项例1:(2)。变式:已知,求函数的最大值。技巧二:凑系数例1. 当时,求的最大值。解析:由知,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到为定值,故只需将凑上一个系数即可。评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。变式:1、设,求函数的最大值。并求此时的值2已知,求函数的最大值.;3,求函数的最大值.技巧三: 分离例3. 求的值域。技巧四:换元解析二:本题看似无法运用均值不等式,可先换元,令t=x1,化简原式在分离求最值。当,即t=时,(当t=2即x1时取“”号)。评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。变式(1) 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数的单调性。例:求函数的值域。解:令,则因,但解得不在区间,故等号不成立,考虑单调性。因为在区间单调递增,所以在其子区间为单调递增函数,故。所以,所求函数的值域为。条件求最值1.若实数满足,则的最小值是 .变式:若,求的最小值.并求x,y的值技巧六:整体代换: 2:已知,且,求的最小值。变式: (1)若且,求的最小值(2)已知且,求的最小值技巧七、已知x,y为正实数,且x 21,求x的最大值.技巧八:已知a,b为正实数,2baba30,求函数y的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。点评:本题考查不等式的应用、不等式的解法及运算能力;如何由已知不等式出发求得的范围,关键是寻找到之间的关系,由此想到不等式,这样将已知条件转换为含的不等式,进而解得的范围.变式:1.已知a>0,b>0,ab(ab)1,求ab的最小值。2.若直角三角形周长为1,求它的面积最大值。技巧九、取平方5、已知x,y为正实数,3x2y10,求函数W的最值.解法一:若利用算术平均与平方平均之间的不等关系,本题很简单 2 解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。W0,W23x2y210210()2()2 10(3x2y)20 W2 变式: 求函数的最大值。评注:本题将解析式两边平方构造出“和为定值”,为利用均值不等式创造了条件。总之,我们利用均值不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用均值不等式。应 应用二:利用均值不等式证明不等式例6:已知a、b、c,且。求证:变式:1已知为两两不相等的实数,求证:2、正数a,b,c满足abc1,求证:(1a)(1b)(1c)8abc应用三:均值不等式与恒成立问题例:已知且,求使不等式恒成立的实数的取值范围。解:令, 。 , 课 堂检 测1:添加项【例1】已知,求的最小值.2:配系数【例2】已知,求的最大值.3:分拆项【例3】已知,求的最小值.4:巧用”1”代换【例4】已知正数满足,求的最小值.【例5】已知正数满足,求的最小值.5:换元【例6】已知,求的最小值.【例7】已知,求的最大值.7:直接运用化为其它【例9】已知正数满足,求的取值范围.课 后作 业1、(1)、已知,满足,求的最值;(2)、若,且,求的最值;(3)、若-4x1,求的最大值. 2、函数f(x)=(x0)的最大值是 ;此时的x值为 _3、(2010 山东理)若对任意,恒成立,则的取值范围是 4、若点在直线上,其中,则的最小值为 .5、(1)、已知x+3y-2=0,则3x+27y+1的最小值为 . (2)、若x,y(0,+)且2x+8y-xy=0,求x+y的最小值 . 6、已知两个正数满足,求使恒成立的的范围.7函数y=loga(x+3)1(a>0,a1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,求的最小值为。8(2010年合肥模拟)已知x1x2x2009x20101,且x1,x2,x2009,x2010都是正数,则的最小值是_9已知直线l过点P(2,1),且与x轴、y轴的正半轴分别交于A、B两点,O为坐标原点,则三角形OAB面积的最小值为_10(2008年江苏卷改编)若x、y、zR,x2y3z0,求的最小值11已知A(0,9) B(0,16)是y轴正半轴上的两点,C(x,0)是x轴上任意一点,求当点C在何位置时,最大?12.已知不等式对任意正实数恒成立,则正实数的最小值为 签 字教研组长: 教学主任: 学生: 教务老师: 家长:老 师课 后评 价学生的状况、接受情况和配合程度:给家长的建议: TA-65

    注意事项

    本文(高级中学基本不等式经典编辑例题教学方案计划教案.doc)为本站会员(一***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开