欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    高二人教A版必修5系列教案:3.3二元一次不等式(组)与平面区域.doc

    • 资源ID:26523963       资源大小:170.50KB        全文页数:3页
    • 资源格式: DOC        下载积分:2金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要2金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    高二人教A版必修5系列教案:3.3二元一次不等式(组)与平面区域.doc

    3.3二元一次不等式(组)与平面区域一、知识与技能1.使学生了解并会用二元一次不等式表示平面区域以及用二元一次不等式组表示平面区域;2.能画出二元一次不等式(组)所表示的平面区域.二、过程与方法1.培养学生观察、联想以及作图的能力,渗透集合、化归、数形结合的数学思想;2.提高学生“建模”和解决实际问题的能力;3.本节新课讲授分为五步(思考、尝试、猜想、证明、归纳)来进行,目的是为了分散难点,层层递进,突出重点,只要学生对旧知识掌握较好,完全有可能由学生主动去探求新知,得出结论.三、情感态度与价值观1.通过本节教学着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,培养学生观察、联想、猜测、归纳等数学能力;2.结合教学内容,培养学生学习数学的兴趣和“用数学”的意识,激励学生勇于创新.会求二元一次不等式(组)表示平面的区域.如何把实际问题转化为线性规划问题,并给出解答.分析引导,类比探究复习引入师 在现实和数学中,我们会遇到各种不同的不等关系,需要用不同的数学模型来刻画和研究它们.前面我们学习了一元二次不等式及其解法,这里我们将学习另一种不等关系的模型.先看一个实际例子.一家银行的信贷部计划年初投入25 000 000元用于企业和个人贷款,希望这笔贷款资金至少可带来30 000元的效益,其中从企业贷款中获益12%,从个人贷款中获益10%,那么,信贷部应该如何分配资金呢?师 这个问题中存在一些不等关系,我们应该用什么不等式模型来刻画它们呢?生 设用于企业贷款的资金为x元,用于个人贷款的资金为y元,由资金总数为25 000 000元,得到x+y25 000 000.师 由于预计企业贷款创收12%,个人贷款创收10%.共创收30 000元以上,所以(12%)x+(10%)y30 000,即12x+10y3 000 000.师 最后考虑到用于企业贷款和个人贷款的资金数额都不能是负数,于是生 x0,y0.师 将合在一起,得到分配资金应该满足的条件:师 我们把含有两个未知数,且未知数的次数是1的不等式(组)称为二元一次不等式(组).满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的解集.有序数对可以看成直角坐标平面内点的坐标.于是,二元一次不等式(组)的解集就可以看成直角坐标系内的点构成的集合.师 我们知道,在平面直角坐标系中,以二元一次方程x+y-1=0的解为坐标的点的集合(x,y)|x+y-1=0是经过点(0,1)和(1,0)的一条直线l,那么,以二元一次不等式(即含有两个未知数,且未知数的最高次数都是1的不等式)x+y-10的解为坐标的点的集合A=(x,y)|x+y-10是什么图形呢?点题板书课题新课学习师 二元一次方程xy10有无数组解,每一组解是一对实数,它们在坐标平面上表示一个点,这些点的集合组成点集(x,y)|xy10,它在坐标平面上表示一条直线.以二元一次不等式xy10的解为坐标的点,也拼成一个点集.如x3,y2时,xy10,点(3,2)的坐标满足不等式xy10.(3,2)是二元一次不等式xy10的解集中的一个元素.我们把二元一次不等式xy10的解为坐标的点拼成的点集记为(x,y)|xy10.请同学们猜想一下,这个点集在坐标平面上表示什么呢?生 xy10表示直线l:xy10右上方的所有点拼成的平面区域.师 事实上,在平面直角坐标系中,所有的点被直线xy10分为三类:在直线xy10上;在直线xy10右上方的平面区域内;在直线xy10左下方的平面区域内.如(2,2)点的坐标代入xy1中,xy10,(2,2)点在直线xy10的右上方.(1,2)点的坐标代入xy1中,xy10,(1,2)点在直线xy10上.(1, 1)点的坐标代入xy1中,xy10,(1,-1)点在直线xy10的左下方.因此,我们猜想,对直线xy10右上方的点(x,y),xy10成立;对直线xy10左下方的点(x,y),xy10成立.师 下面对这一猜想进行一下推证.生在直线l:xy10上任取一点P(x 0,y 0),过点P作平行于x轴的直线yy0,这时这条平行线上在P点右侧的任意一点都有xx 0,yy0两式相加.xyx 0y 0,则xy1x0y01,P点在直线xy10上,x0y 010.所以xy10.因为点P(x0,y0)是直线xy10上的任意一点,所以对于直线xy10的右上方的任意点(x,y),xy10都成立.同理,对于直线xy10左下方的任意点(x,y),xy10都成立.所以点集(x,y)|xy10是直线xy10右上方的平面区域,点集(x,y)|xy10是直线xy10左下方的平面区域.师一般来讲,二元一次不等式AxByC0在平面直角坐标系中表示直线AxByC0的某一侧所有点组成的平面区域.如何让快速、准确的判断?生由于对在直线AxByC0同一侧的所有点(x,y),实数AxByC的符号相同,所以只需在此直线的某一侧取一个特殊点(x 0,y0),由Ax0By0C的正、负就可判断AxByC0表示直线哪一侧的平面区域.师当C0时,我们常把原点作为这个特殊点去进行判断.如把(0,0)代入xy1中,xy10.说明:xy10表示直线xy10左下方原点所在的区域,就是说不等式所表示的区域与原点在直线xy10的同一侧.如果C0,直线过原点,原点坐标代入无法进行判断,则可另选一个易计算的点去进行判断.师 提醒同学们注意,不等式AxByC0所表示的区域,应当理解为(x,y)|AxByC0(x,y)|AxByC0.这个区域包括边界直线,应把边界直线画为实线.师 另外同学们还应当明确有关区域的一些称呼.(1)A为直线l右上方的平面区域(2)B为直线l左下方的平面区域(3)C为直线l左上方的平面区域(4)D为直线l右下方的平面区域归纳总结师 二元一次不等式ax+by+c0和ax+by+c0表示的平面区域.(1)结论:二元一次不等式ax+by+c0在平面直角坐标系中表示直线ax+by+c=0某一侧所有点组成的平面区域.把直线画成虚线以表示区域不包括边界直线,若画不等式ax+by+c0表示的平面区域时,此区域包括边界直线,则把边界直线画成实线.(2)判断方法:由于对在直线ax+by+c=0同一侧的所有点(x,y),把它的坐标(x,y)代入ax+by+c,所得的实数的符号都相同,故只需在这条直线的某一侧取一个特殊点(x0,y0),以ax0+by0+c的正负情况便可判断ax+by+c0表示这一直线哪一侧的平面区域,特殊地,当c0时,常把原点作为此特殊点.

    注意事项

    本文(高二人教A版必修5系列教案:3.3二元一次不等式(组)与平面区域.doc)为本站会员(模**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开