欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    空间向量与立体几何知识点归纳总结15.docx

    • 资源ID:26570699       资源大小:440.72KB        全文页数:14页
    • 资源格式: DOCX        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    空间向量与立体几何知识点归纳总结15.docx

    精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结一学问要点。名师举荐细心整理学习必备空间向量与立体几何学问点归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结1. 空间向量的 概念:在空间,我们把具有大小和方向的量叫做向量。注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。(2)向量具有 平移不变性2. 空间向量的 运算。定义:与平面对量运算一样,空间向量的加法、减法与数乘运算如下(如图)。OBOAABab ; BAOAOBab ; OPaR运算律: 加法交换律: abba可编辑资料 - - - 欢迎下载精品名师归纳总结加法结合律:数乘安排律:ab cabc abab可编辑资料 - - - 欢迎下载精品名师归纳总结运算法就 :三角形法就、平行四边形法就、平行六面体法就3. 共线向量。(1)假如表示空间向量的有向线段所在的直线平行或重合 ,那么这些向量也叫做共可编辑资料 - - - 欢迎下载精品名师归纳总结线向量或平行向量,a 平行于 b ,记作a / b 。可编辑资料 - - - 欢迎下载精品名师归纳总结(2)共线向量定理 :空间任意两个向量 a 、b ( b 0 ), a / b 存在实数 ,使a b 。可编辑资料 - - - 欢迎下载精品名师归纳总结(3)三点共线 :A 、B、C 三点共线 <=> AB<=> OCACxOAyOB 其中 xy1可编辑资料 - - - 欢迎下载精品名师归纳总结( 4)与 a 共线的单位向量为aa4. 共面对量(1)定义:一般的,能平移到同一平面内的向量叫做共面对量。说明:空间任意的 两向量都是共面 的。可编辑资料 - - - 欢迎下载精品名师归纳总结(2)共面对量定理 :假如两个向量x, y 使 pxayb 。a, b 不共线, p 与向量a,b 共面的条件是存在实数可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结( 3) 四点共面:如 A 、B、C、P 四点共面 <=> APx ABy AC可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结<=> OPxOAyOBzOC 其中 xyz1可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结5. 空间向量基本定理 :假如三个向量a, b, c 不共面,那么对空间任一向量p ,存在一可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结个唯独的有序实数组x, y, z ,使 pxaybzc 。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结如三向量a,b,c不共面,我们把 a,b,c叫做空间的一个 基底,a, b, c 叫做基向量,可编辑资料 - - - 欢迎下载精品名师归纳总结空间任意三个不共面的向量都可以构成空间的一个基底。可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 1 页,共 7 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -名师举荐细心整理学习必备推论: 设 O, A, B,C 是不共面的四点,就对空间任一点P ,都存在唯独的三个有序实数x, y, z ,使 OPxOAyOBzOC 。可编辑资料 - - - 欢迎下载精品名师归纳总结6. 空间向量的直角坐标系:(1)空间直角坐标系中的坐标:在空间直角坐标系 Oxyz 中,对空间任一点 A ,存在唯独的有序实数组 x,y, z ,使可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结OAxiyizk,有序实数组 x,y, z叫作向量 A 在空间直角坐标系 Oxyz 中的坐标,记可编辑资料 - - - 欢迎下载精品名师归纳总结作 A x, y, z , x 叫横坐标, y 叫纵坐标, z 叫竖坐标。注:点 A (x,y,z)关于 x 轴的 的对称点为 x,-y,-z,关于 xoy 平面的对称点为 x,y,-z.即点关于什么轴 /平面对称,什么坐标不变,其余的分坐标均相反。在y 轴上的点设为0,y,0,在平面 yOz中的点设为 0,y,z(2)如空间的一个基底的三个基向量相互垂直,且长为1 ,这个基底叫单位 正交基底 ,可编辑资料 - - - 欢迎下载精品名师归纳总结用 i ,j , k表示。空间中任一向量axiy jzk=( x,y,z)可编辑资料 - - - 欢迎下载精品名师归纳总结( 3)空间向量的直 角坐标运算律:可编辑资料 - - - 欢迎下载精品名师归纳总结如 aa1 ,a2 , a3 , bb1,b2 ,b3 ,就 aba1b1, a2b2 , a3b3 ,可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结aba1b1 , a2b2 , a3b3 ,aa1 ,a2 ,a3 R ,可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结aba1b1a2b2a3b3 ,可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结a / ba1aba1b1b1, a2 a2b2b2, a3 a3b30 。b3 R ,可编辑资料 - - - 欢迎下载精品名师归纳总结如 A x1 ,y1 , z1 ,Bx2 ,y2 , z2 ,就 AB x2x1 , y2y1 , z2z1 。可编辑资料 - - - 欢迎下载精品名师归纳总结一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。可编辑资料 - - - 欢迎下载精品名师归纳总结 定 比 分 点 公 式 : 如A x1 ,y1 ,z1 ,B x2 ,y2 , z2 , APPB , 就 点 P坐 标 为可编辑资料 - - - 欢迎下载精品名师归纳总结 x11x2 , y11y2 , z11z2 。推导:设 P(x,y,z)就 xx1, yy1,zz1x2x,y2y,z2z ,可编辑资料 - - - 欢迎下载精品名师归纳总结明显,当 P 为 AB 中点时,P x1x2 , y12y2 , z12z2 2可编辑资料 - - - 欢迎下载精品名师归纳总结ABC中, A(x1, y1 , z1), B x2 , y2 , z2 ,C x3 , y3 , z3, 三 角 形 重 心P坐 标 为可编辑资料 - - - 欢迎下载精品名师归纳总结P x1x2 3x3 , y1y22y3 , z1z2z3 2可编辑资料 - - - 欢迎下载精品名师归纳总结 ABC的五心:可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 2 页,共 7 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -名师举荐细心整理学习必备可编辑资料 - - - 欢迎下载精品名师归纳总结内心 P:内切圆的圆心,角平分线的交点。AP外心 P:外接圆的圆心,中垂线的交点。PA ABACABACPBPC (单位向量)可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结垂心 P:高的交点: PAPBPAPCPBPC (移项,内积为0,就垂直)可编辑资料 - - - 欢迎下载精品名师归纳总结重心 P:中线的交点,三等分点(中位线比)中心:正三角形的全部心的合一。AP1 AB 3AC 可编辑资料 - - - 欢迎下载精品名师归纳总结(4)模长公式 :如 aa1, a2 , a3 , bb1 , b2 ,b3 ,可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结222就| a |aaa 2a 2a, | b |b bbbb可编辑资料 - - - 欢迎下载精品名师归纳总结2123123可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结(5)夹角公式:cos a ba ba1b1a2b2a3b3222222。可编辑资料 - - - 欢迎下载精品名师归纳总结| a | | b |aaabbb可编辑资料 - - - 欢迎下载精品名师归纳总结123123可编辑资料 - - - 欢迎下载精品名师归纳总结ABC中 ABAC0 <=>A 为锐角 ABAC0 <=>A为钝角,钝角 可编辑资料 - - - 欢迎下载精品名师归纳总结(6)两点间的距离公式:如A x1,y1 , z1 , Bx2 , y2 , z2 ,可编辑资料 - - - 欢迎下载精品名师归纳总结2就| AB |AB xx 2 yy 2 zz 2 ,可编辑资料 - - - 欢迎下载精品名师归纳总结212121或 dxx 2 yy 2zz 2A ,B212121可编辑资料 - - - 欢迎下载精品名师归纳总结7. 空间向量的数量积。( 1)空间向量的夹角及其表示:已知两非零向量a,b ,在空间任取一点O ,作可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结OAa,OBb, 就A O B叫 做 向 量 a与 b的 夹 角 , 记 作a, b。 且 规 定可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结0a,b,明显有a, bb, a。如a , b,就称 a 与b 相互垂直,记作:ab 。2可编辑资料 - - - 欢迎下载精品名师归纳总结(2)向量的模:设 OAa ,就有向线段 OA的长度叫做向量 a 的长度或模,记作: | a | 。可编辑资料 - - - 欢迎下载精品名师归纳总结(3)向量的数量积:已知向量a, b ,就 | a| b|cosa, b叫做a,b 的数量积,记可编辑资料 - - - 欢迎下载精品名师归纳总结作 a b ,即 ab|a| |b | cosa,b。(4)空间向量数量积的性质:可编辑资料 - - - 欢迎下载精品名师归纳总结 ae| a | cosa, e。abab0 。 | a |2aa 。可编辑资料 - - - 欢迎下载精品名师归纳总结(5)空间向量数量积运算律:可编辑资料 - - - 欢迎下载精品名师归纳总结 ababab。 abba (交换律)。可编辑资料 - - - 欢迎下载精品名师归纳总结 abcabac (安排律)。可编辑资料 - - - 欢迎下载精品名师归纳总结不满意 乘法结合率: a二空间向量与立体几何bcabc可编辑资料 - - - 欢迎下载精品名师归纳总结1线线平行两线的方向向量平行1-1 线面平行线的方向向量与面的法向量垂直1-2 面面平行两面的法向量平行2 线线垂直(共面与异面)两线的方向向量垂直可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 3 页,共 7 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -名师举荐细心整理学习必备2-1 线面垂直线与面的法向量平行OO2-2 面面垂直两面的法向量垂直可编辑资料 - - - 欢迎下载精品名师归纳总结3 线 线夹角(共面与异面) 0,90两线的方向向量n1, n 2的夹角或夹角的补角,可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结OOcoscosn1, n2可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结3-1 线面夹角 0,90 :求线面夹角的步骤:先求线的方向向量AP 与面的法向量 n 的可编辑资料 - - - 欢迎下载精品名师归纳总结夹角,如为锐角角即可,如为钝角,就取其补角。再求其余角,即是线面的夹可编辑资料 - - - 欢迎下载精品名师归纳总结OO角. sincosAP, n可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结3-2 面面夹角( 二面角)0,180 :如两面的法向量一进一出,就二面角等于两法向可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结量 n1 , n2的 夹 角 。 法 向 量 同 进 同 出 , 就 二 面 角 等 于 法 向 量 的 夹 角 的 补 角 .可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结coscosn1, n2可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结4点面距离 h:求点P x0 , y0到平面的距离: 在平面上去一点Q x, y ,得向量 PQ ;。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结运算平面的法向量 n ;. hPQnn可编辑资料 - - - 欢迎下载精品名师归纳总结4-1 线面距离(线面平行) :转化为点面距离4-2 面面距离(面面平行) :转化为点面距离可编辑资料 - - - 欢迎下载精品名师归纳总结【典型例题】1基本运算与基本学问()例 1.已知平行六面体ABCD AB C D,化简以下向量表达式, 标出化简结果的向量。可编辑资料 - - - 欢迎下载精品名师归纳总结 ABBC 。 ABADAA 。可编辑资料 - - - 欢迎下载精品名师归纳总结 ABAD1 CC。 1 ABADAA 。可编辑资料 - - - 欢迎下载精品名师归纳总结23MG可编辑资料 - - - 欢迎下载精品名师归纳总结例 2.对空间任一点 O 和不共线的三点A, B,C ,问满意向量式:可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 4 页,共 7 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -名师举荐细心整理学习必备可编辑资料 - - - 欢迎下载精品名师归纳总结OPxOAyOBzOC (其中xyz1 )的四点P, A, B,C 是否共面?可编辑资料 - - - 欢迎下载精品名师归纳总结例 3已知空间三点 A ( 0, 2,3),B( 2,1,6),C( 1, 1, 5)。可编辑资料 - - - 欢迎下载精品名师归纳总结求以向量AB, AC 为一组邻边的平行四边形的面积S。可编辑资料 - - - 欢迎下载精品名师归纳总结如向量 a 分别与向量AB, AC 垂直,且 |a |3 ,求向量 a 的坐标。可编辑资料 - - - 欢迎下载精品名师归纳总结2基底法(如何找,转化为基底运算)3坐标法(如何建立空间直角坐标系,找坐标)可编辑资料 - - - 欢迎下载精品名师归纳总结4几何法例 4.如图,在空间四边形OABC中, OA8 , AB6 , AC4 , BC5 ,OAC45 ,可编辑资料 - - - 欢迎下载精品名师归纳总结OAB60 ,求 OA 与 BC 的夹角的余弦值。O可编辑资料 - - - 欢迎下载精品名师归纳总结AC可编辑资料 - - - 欢迎下载精品名师归纳总结说明:由图形知向量的夹角易出错,如BOA, AC135易错写成OA, AC45 ,切记!可编辑资料 - - - 欢迎下载精品名师归纳总结例 5.长方体ABCDA1B1C1D1 中,ABBC4 , E 为A1C1 与 B1D1 的交点, F 为BC1 与 B1C 的可编辑资料 - - - 欢迎下载精品名师归纳总结交点,又 AFBE ,求长方体的高BB1 。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结【模拟试题】1. 已知空间四边形ABCD ,连结AC , BD ,设 M , G 分别是BC , CD 的中点,化简以下各表达可编辑资料 - - - 欢迎下载精品名师归纳总结式,并标出化简结果向量: ( 1) ABBCCD 。可编辑资料 - - - 欢迎下载精品名师归纳总结(2) AB1 BDBC 2。(3) AG1 ABAC 。2可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 5 页,共 7 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -名师举荐细心整理学习必备2. 已知平行四边形ABCD,从平面 AC 外一点 O 引向量。OEkOA, OFkOB,OGkOC,OHkOD。可编辑资料 - - - 欢迎下载精品名师归纳总结(1)求证:四点E , F ,G , H 共面。可编辑资料 - - - 欢迎下载精品名师归纳总结(2)平面 AC / 平面 EG 。可编辑资料 - - - 欢迎下载精品名师归纳总结3. 如图正方体ABCDA B C D 中,B ED F1 A B ,求 BE 与 DF 所成角的余弦。可编辑资料 - - - 欢迎下载精品名师归纳总结1111111111114可编辑资料 - - - 欢迎下载精品名师归纳总结5.已知平行六面体 ABCDA B C D 中,可编辑资料 - - - 欢迎下载精品名师归纳总结AB4, AD3, AA5,BAD90,可编辑资料 - - - 欢迎下载精品名师归纳总结BAADAA60,求 AC 的长。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 6 页,共 7 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结资料word 精心总结归纳 - - - - - - - - - - - -可编辑资料 - - - 欢迎下载精品名师归纳总结1. 解:如图,名师举荐细心整理学习必备 参考答案 可编辑资料 - - - 欢迎下载精品名师归纳总结(1) ABBCCDACCDAD 。(2) AB1 BDBC AB1 BC1 BD 。222ABBMMGAG 。可编辑资料 - - - 欢迎下载精品名师归纳总结(3) AG1 ABAC 2AGAMMG 。可编辑资料 - - - 欢迎下载精品名师归纳总结2. 解:( 1)证明:四边形ABCD 是平行四边形,ACABAD , EGOGOE ,kOCkOAkOCOAk ACk ABAD 可编辑资料 - - - 欢迎下载精品名师归纳总结kOBOAODOAEFEH E , F , G, H 共面。OFOEOHOE可编辑资料 - - - 欢迎下载精品名师归纳总结(2)解:EFOFOEk OBOAkAB ,又 EGkAC ,可编辑资料 - - - 欢迎下载精品名师归纳总结 EF/ AB, EG /AC 。可编辑资料 - - - 欢迎下载精品名师归纳总结可编辑资料 - - - 欢迎下载精品名师归纳总结所以,平面3.AC /平面 EG 。可编辑资料 - - - 欢迎下载精品名师归纳总结解:不妨设正方体棱长为1,建立空间直角坐标系Oxyz ,可编辑资料 - - - 欢迎下载精品名师归纳总结就 B 1,1,0 , E11,3 ,1 , D 0,0,0 ,4F10,1 ,1 ,4可编辑资料 - - - 欢迎下载精品名师归纳总结 BE10,1,1 , DF1410,1 ,4可编辑资料 - - - 欢迎下载精品名师归纳总结 BE1DF117 ,4可编辑资料 - - - 欢迎下载精品名师归纳总结BE1DF10011 1115 。可编辑资料 - - - 欢迎下载精品名师归纳总结441615可编辑资料 - - - 欢迎下载精品名师归纳总结cosBE1, DF11617174415 。17可编辑资料 - - - 欢迎下载精品名师归纳总结4. 分析:AB2,1,3, AC1, 3,2,cosBACABAC1| AB | AC |2可编辑资料 - - - 欢迎下载精品名师归纳总结 BAC 60°,S| AB | AC | sin6073可编辑资料 - - - 欢迎下载精品名师归纳总结设 a ( x,y,z),就aAB2xy3z0,可编辑资料 - - - 欢迎下载精品名师归纳总结aACx3y2z0,| a |3x2y2z23可编辑资料 - - - 欢迎下载精品名师归纳总结解得 xy z 1 或 xy z 1, a ( 1, 1, 1)或 a ( 1, 1, 1)。5. 解: | AC |2 ABADAA 2可编辑资料 - - - 欢迎下载精品名师归纳总结| AB |2| AD |2| AA |22AB AD2AB AA2 AD AA可编辑资料 - - - 欢迎下载精品名师归纳总结423252243cos90245cos60235cos60169250201585可编辑资料 - - - 欢迎下载精品名师归纳总结所以, | AC |85 。可编辑资料 - - - 欢迎下载精品名师归纳总结学习资料 名师精选 - - - - - - - - - -第 7 页,共 7 页 - - - - - - - - - -可编辑资料 - - - 欢迎下载

    注意事项

    本文(空间向量与立体几何知识点归纳总结15.docx)为本站会员(C****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开