2022年线性代数公式大全 .pdf
学习必备欢迎下载1、 行 列 式1.n行列式共有2n 个元素,展开后有!n 项,可分解为2n行列式;2.代数余子式的性质:、ijA和ija的大小无关;、某行(列)的元素乘以其它行(列)元素的代数余子式为0;、某行(列)的元素乘以该行(列)元素的代数余子式为A;3.代数余子式和余子式的关系:( 1)( 1)ijijijijijijMAAM4.设n行列式D:将D上、下翻转或左右翻转,所得行列式为1D ,则(1)21( 1)n nDD ;将D顺时针或逆时针旋转90 ,所得行列式为2D ,则(1)22( 1)n nDD ;将D主对角线翻转后(转置),所得行列式为3D ,则3DD ;将D主副角线翻转后,所得行列式为4D ,则4DD ;5.行列式的重要公式:、主对角行列式:主对角元素的乘积;、副对角行列式:副对角元素的乘积(1)2( 1)n n;、上、下三角行列式():主对角元素的乘积;、和:副对角元素的乘积(1)2( 1)n n;、拉普拉斯展开式:AOACA BCBOB、( 1)m nCAOAA BBOBC、范德蒙行列式:大指标减小指标的连乘积;、特征值;6.对于n阶行列式A,恒有:1( 1)nnknkkkEAS,其中kS 为 k 阶主子式;7.证明0A的方法:、AA;、反证法;、构造齐次方程组0Ax,证明其有非零解;、利用秩,证明()r An ;、证明0 是其特征值;2、 矩 阵1.A是n阶可逆矩阵:0A(是非奇异矩阵);()r An (是满秩矩阵)A的行(列)向量组线性无关;齐次方程组0Ax有非零解;nbR , Axb总有唯一解;A与E等价;A可表示成若干个初等矩阵的乘积;A的特征值全不为0;TA A 是正定矩阵;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 6 页学习必备欢迎下载A的行(列)向量组是nR 的一组基;A是nR 中某两组基的过渡矩阵;2.对于n阶矩阵A:*AAA AA E无条件恒 成立;3.1*111*()()()()()()TTTTAAAAAA*111()()()TTTABB AABB AABBA4.矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5.关于分块矩阵的重要结论,其中均A、B可逆:若12sAAAA,则:、12sAAAA;、111121sAAAA;、111AOAOOBOB;(主对角分块)、111OAOBBOAO;(副对角分块)、11111ACAACBOBOB;(拉普拉斯)、11111AOAOCBB CAB;(拉普拉斯)3、 矩 阵 的 初 等 变 换 与 线 性 方 程 组1.一个mn矩阵A,总可经过初等变换化为标准形,其标准形是唯一确定的:rmnEOFOO;等价类:所有与A等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A、B,若()()r Ar BAB ;2.行最简形矩阵:、只能通过初等行变换获得;、每行首个非0 元素必须为1;、每行首个非0 元素所在列的其他元素必须为0;3.初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)、若 (,)(,)rA EEX,则A可逆,且1XA;、对矩阵(,)A B 做初等行变化,当A变为E时,B就变成1A B ,即:1(,)(,)cA BE A B ;、求解线形方程组:对于n个未知数n个方程 Axb,如果 (, )(, )rA bE x ,则A可逆,且1xA b;4.初等矩阵和对角矩阵的概念:、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 6 页学习必备欢迎下载、12n,左乘矩阵A,i乘A的各行元素;右乘,i乘A的各列元素;、对调两行或两列,符号( , )E i j ,且1( , )( , )E i jE i j,例如:1111111;、倍乘某行或某列,符号( ( )E i k,且11( ( )( ()E i kE ik,例如:1111(0)11kkk;、倍加某行或某列,符号( ( )E ij k,且1( )( ()E ij kE ijk,如:11111(0)11kkk;5.矩阵秩的基本性质:、 0()min(, )mnr Am n ;、()()Tr Ar A;、若AB,则()()r Ar B ;、若P、 Q 可逆,则()()()()r Ar PAr AQr PAQ ;( 可逆矩阵不影响矩阵的秩)、 max( (), ()(,)()()r A r Br A Br Ar B ;( )、()()()r ABr Ar B ;( )、()min( (), ()r ABr A r B;( )、如果A是mn矩阵,B是ns矩阵,且0AB,则:( )、B的列向量全部是齐次方程组0AX解(转置运算后的结论);、()()r Ar Bn、若A、B均为n阶方阵,则()()()r ABr Ar Bn ;6.三种特殊矩阵的方幂:、秩为1 的矩阵:一定可以分解为列矩阵(向量)行矩阵(向量)的形式,再采用结合律;、型如101001acb的矩阵:利用二项展开式;二项展开式:01111110()nnnnmnmmnnnnmmnmnnnnnnmabC aC abC abCa bC bC a b;注:、()nab展开后有1n项;、0(1)(1)!11 2 3!()!mnnnnn nnmnCCCmm nm、组合的性质:111102nmnmmmmrnrrnnnnnnnnrCCCCCCrCnC;、利用特征值和相似对角化:7.伴随矩阵:、伴随矩阵的秩:*()()1()10()1nr Anr Ar Anr An;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 6 页学习必备欢迎下载、伴随矩阵的特征值:*1*(,)AAAXX AA AA XX;、*1AA A、1*nAA8.关于A矩阵秩的描述:、()r An ,A中有n阶子式不为0,1n阶子式全部为0;(两句话)、()r An ,A中有n阶子式全部为0;、()r An ,A中有n阶子式不为0;9.线性方程组:Axb,其中A为mn矩阵,则:、m与方程的个数相同,即方程组Axb有m个方程;、n与方程组得未知数个数相同,方程组Axb为n元方程;10.线性方程组Axb的求解:、对增广矩阵B进行初等行变换(只能使用初等行变换);、齐次解为对应齐次方程组的解;、特解:自由变量赋初值后求得;11.由n个未知数m个方程的方程组构成n元线性方程:、11112211211222221122nnnnmmnmnna xa xa xba xa xa xbaxaxaxb;、1112111212222212nnmmmnmmaaaxbaaaxbAxbaaaxb(向量方程,A为mn矩阵,m个方程,n个未知数)、1212nnxxaaax(全部按列分块,其中12nbbb);、1122nna xa xa x(线性表出)、有解的充要条件:()(,)r Ar An(n为未知数的个数或维数)4、 向 量 组 的 线 性 相 关 性1.m个n维列向量所组成的向量组A:12,m构成nm矩阵12(,)mA;m个n维行向量所组成的向量组B:12,TTTm构成mn矩阵12TTTmB;含有有限个向量的有序向量组与矩阵一一对应;2.、向量组的线性相关、无关0Ax有、无非零解;(齐次线性方程组)、向量的线性表出Axb是否有解;(线性方程组)、向量组的相互线性表示AXB 是否有解;(矩阵方程)3.矩阵mnA与lnB行向量组等价的充分必要条件是:齐次方程组0Ax和0Bx同解; (101P例 14) 4.()()Tr A Ar A; (101P例 15) 5.n维向量线性相关的几何意义:、线性相关0 ;、,线性相关,坐标成比例或共线(平行);精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 6 页学习必备欢迎下载、,线性相关,共面;6.线性相关与无关的两套定理:若12,s线性相关,则121,ss必线性相关;若12,s线性无关,则121,s必线性无关;(向量的个数加加减减,二者为对偶)若r维向量组A的每个向量上添上nr个分量,构成n维向量组B:若A线性无关,则B也线性无关;反之若B线性相关,则A也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7.向量组A(个数为r)能由向量组B(个数为s)线性表示,且A线性无关,则rs(二版74P定理 7);向量组A能由向量组B线性表示,则()()r Ar B ;(86P定理 3)向量组A能由向量组B线性表示AXB 有解;()(,)r Ar A B (85P定理 2)向量组A能由向量组B等价()()(,)r Ar Br A B (85P定理 2 推论 )8.方阵A可逆存在有限个初等矩阵12,lP PP ,使12lAP PP ;、矩阵行等价:rABPAB(左乘,P可逆)0Ax与0Bx同解、矩阵列等价:cABAQB (右乘, Q 可逆);、矩阵等价:ABPAQB(P、 Q 可逆);9.对于矩阵m nA与lnB:、若A与B行等价,则A与B的行秩相等;、若A与B行等价,则0Ax与0Bx同解,且A与B的任何对应的列向量组具有相同的线性相关性;、矩阵的初等变换不改变矩阵的秩;、矩阵A的行秩等于列秩;10.若mss nm nABC,则:、 C 的列向量组能由A的列向量组线性表示,B为系数矩阵;、 C 的行向量组能由B的行向量组线性表示,TA 为系数矩阵;(转置)11.齐次方程组0Bx的解一定是0ABx的解, 考试中可以直接作为定理使用,而无需证明;、0ABx只有零解0Bx只有零解;、0Bx有非零解0ABx一定存在非零解;12.设向量组12:,n rrBb bb可由向量组12:,nssAa aa线性表示为:(110P题 19 结论 )1212(,)(,)rsb bba aa K (BAK)其中K为sr,且A线性无关,则B组线性无关()r Kr ;(B与K的列向量组具有相同线性相关性)(必要性:()()(), (),()rr Br AKr Kr Krr Kr ;充分性:反证法)注:当rs时,K为方阵,可当作定理使用;13.、对矩阵mnA,存在n mQ,mAQE()r Am 、 Q 的列向量线性无关;(87P)、对矩阵mnA,存在n mP,nPAE()r An、P的行向量线性无关;14.12,s线性相关存在一组不全为0 的数12,sk kk ,使得11220sskkk成立;(定义)1212(,)0ssxxx有非零解,即0Ax有非零解;12(,)srs,系数矩阵的秩小于未知数的个数;15.设mn的矩阵A的秩为r,则n元齐次线性方程组0Ax的解集 S 的秩为:( )r Snr ;16.若*为 Axb的一个解,12,nr为0Ax的一个基础解系,则*12,nr线性无关;(111P题33 结论 )精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 6 页学习必备欢迎下载5、 相 似 矩 阵 和 二 次 型1.正交矩阵TA AE 或1TAA (定义),性质:、A的列向量都是单位向量,且两两正交,即1( ,1,2,)0Tijija ai jnij;、若A为正交矩阵,则1TAA 也为正交阵,且1A;、若A、B正交阵,则AB也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化 和单位化 ;2.施密特正交化:12(,)ra aa11ba ;1222111,b ababb b121121112211,rrrrrrrrrb ab abababbbb bb bbb; 3.对于普通方阵,不同特征值对应的特征向量线性无关;对于 实对称阵 ,不同特征值对应的特征向量正交;4.、A与B等价A经过初等变换得到B;PAQB ,P、 Q 可逆;()()r Ar B ,A、B同型;、A与B合同TC ACB ,其中可逆;Tx Ax 与Tx Bx有相同的正、负惯性指数;、A与B相似1PAPB ;5.相似一定合同、合同未必相似;若 C 为正交矩阵,则TC ACBAB,(合同、相似的约束条件不同,相似的更严格);6.A为对称阵,则A为二次型矩阵;7.n元二次型Tx Ax 为正定:A 的正惯性指数为n;A 与E合同,即存在可逆矩阵C ,使TC ACE ;A 的所有特征值均为正数;A 的各阶顺序主子式均大于0;0,0iiaA;(必要条件 ) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 6 页