2022年绝对值不等式的解法说课稿 .pdf
名师精编优秀教案含绝对值不等式的解法说课稿各位领导、老师们,你们好!我是XXX 的 XX 。今天我要说课的主题是含绝对值不等式的解法 。我将从以下几方面对本节课进行说课。一、课题介绍含绝对值不等式的解法选自高中数学第一册(上)第一章第四节的内容。本节是第一课时。二、教材分析1、本节在教材中的地位和作用不等式是中学学习的主要内容之一. 解含绝对值的不等式问题的基本思想是设法去掉绝对值符号,化归为不含绝对值符号的不等式去解. 而去绝对值的方法主要有公式法、分类讨论法、平方法、几何法等.本节主要学习里面的公式法,即运用绝对值的几何意义及数形结合、 整体代换等思想来去掉绝对值符号,转化为不含绝对值的不等式求解 .含绝对值不等式的学习,是在初中一元一次不等式的基础上进行的,是集合知识的应用和巩固,同时,为以后不等式的学习打下了基础,对培养学生分析问题、解决问题的能力、理解能力、培育思维的灵活性有很大的帮助,同时能使学生养成多角度认识事物的习惯;并通过不等式变换的等价性培养思维的可容性.2、目标分析根据课程标准的要求及本节的地位和作用,我从以下几方面来确定教学目标:( 1 ) 知 识 目 标 : 理 解0 xaxaa或的 解 集 ; 掌 握axbcaxbc与0,0ac的解法 .(2)能力目标:运用含绝对值的不等式的解法解决一些简单的不等式;培养学生数形结合、整体代换等意识.(3)情感目标:感悟形与数不同的数学形态间的和谐同一美, 培养学生对事物之间转化的辩证唯物主义观点的认识.3、教学重点与难点本节注重培养学生“数形结合” 、 “整体代换”思想及解决问题分析问题的能力,因而确定重、难点为:重点:0 xaxaa或的解法及解集;0,0axbcax bcac与型不等式的解法 . 难点:如何引导学生处理含绝对值的不等式变换的等价性问题的技巧.三、教法分析建构主义教学理论认为: “知识是不能为教师所传授的,而只能为学习者所构精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 4 页名师精编优秀教案建. ”也就是说,教学过程不只是知识的授受过程,也不是机械的告诉与被告诉的过程,而是一个学习者主动学习的过程.因而,考虑到学生的认知水平,本节通过师生之间的相互探讨和交流进行教学,即以美国著名心理学家布鲁纳的发现式教学法为主,结合讲练结合法、提问法等展开教学. 四、学法分析根据新课程标准理念,学生是学习的主体,教师只是学习的帮助者,引导者. 考虑到这节课主要通过老师的引导让学生自己发现规律,在自己的发现中学到知识, 提高能力,我主要探求推导不等式0 xaxa a与的解法过程中引导学生自己观察、归纳、分析,采用自主探究的方法进行学习,并使学生从中体会学习的兴趣. 五、教学过程根据教学内容的特点,我将本节课分为以下几个环节1、复习知识,创始情景为使学生轻松的进入学习,并为后面的学习作准备,通过复习绝对值的定义,导入新课 . 既巩固了旧知识,又促进了学生对新知识的理解为解0 xaxa a与型的绝对值不等式做好了铺垫.同时为了培养学生的数学建模思维意识,将结合一次函数的图像来解绝对值不等式235x,展开新课的讲解 . 2、展示新知(1)在学生已有知识的基础上,运用奥苏伯尔的“先行组织者”理论,联系方程5x的解法,结合数轴,与学生共同讨论出55xx与的解法 .(2)根据弗赖登塔尔的数学教育特征之一,学生通过自己努力得到的结论也是教育的一部分 . 这里我将引导学生自己运用数形结合的思想,归纳得出0 xaxa a与的解集,并作适当的引申,扩展.(3)为巩固所学知识,让学生独立完成部分简单的练习,教师作简单的讲解. (4)当学生尝到成功的喜悦后,继而提出问题:如果把x的系数由 1 变为 2,或者是任意的一个常数a,或者再在ax后加一个常数b,这种不等式该怎么解呢?激发学生进一步学习的兴趣,再引导学生运用整体代换思想来掌握0,0axbcaxbc ac与的解法 .3、例题讲解知识注重应用 .因而,当这部分知识讲解完后,我将通过1 个例题来强化学生对知识的理解 .精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 4 页名师精编优秀教案例 1 解不等式235x.目的:巩固所学知识,解决情景中问题.例题注重分析,并将结果回到情景,培养学生理论联系实际的思想. 4、课堂练习根据夸美纽斯的教学巩固性原则,为了培养学生独立解决问题的能力,在例题讲解后,通过抽个别同学上黑板演算, 其余同学在草稿本上完成练习的方式来掌握学生的学习情况,从而对讲解内容作适当的补充提醒.练习 1 解不等式 237x.目的:对新课内容再次进行巩固,同时理解绝对值的一个性质:aa. 即在这个题中 2332xx.5、课时小结为了使学生对本节内容由一个系统的认识,再次加深学生对数形结合,整体代换等思想的理解和掌握,将对0 xaxa a与、0,0axbcaxbcac与型不等式的解题思想进行复习,其中用表格的形式列出0 xaxa a与的解集 .6、作业布置(1)复习本节课所学内容;(2)16 页1 (1) (3); 2 (2)(4);4 (3)思考题:1.本节我们是运用数形结合的思想来将含绝对值的不等式转化为不含绝对值的不等式来求解,大家思考一下我们能不能用分类讨论的方法来转化呢?即能不能将00 xxx分为与两种情况来讨论 . 2本节课我们学习的是含有一个绝对值的不等式的解法,那么大家想一下含有两个绝对值的不等式,即(0)xaxbc c的不等式该怎么解?目的:使学生进一步掌握所学知识,提高学生的思维能力,探索能力,第2 个思考题又为下节课所要讲的解含两个绝对值符号的不等式的解法做预习.六、板书设计板书设计的好坏直接影响这节课的效果,因此它起着举足轻重的作用. 为了使整个板面重点突出,层次分明,我将黑板分为四版:第一和第二版是新课的讲解,第三是例 1 和练习 1,第四版作副版使用,用于旧知识的复习和情景问题的提出,这样的精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 4 页名师精编优秀教案排版使学生一目了然 . 绝对值不等式的解法绝对值的意义去绝对值的符号的不等式由 x 到1xx 去 绝对值符号例 1 练习 1 复习旧知,回忆绝对值的意义七、教学评价总之,这节课是本着教师只是学生学习的引导者,知识是由学生自主构建的原则设计的 . 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 4 页