欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    备战2020年高考数学一轮复习第5单元解三角形单元训练B卷理含.doc

    • 资源ID:2680739       资源大小:841KB        全文页数:9页
    • 资源格式: DOC        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    备战2020年高考数学一轮复习第5单元解三角形单元训练B卷理含.doc

    此卷只装订不密封班级 姓名 准考证号 考场号 座位号 单元训练金卷高三数学卷(B)第5单元 解三角形注意事项:1答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。3非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4考试结束后,请将本试题卷和答题卡一并上交。第卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1在中,若,则角等于( )ABCD2若ABC中,角A,B,C的对边分别为a,b,c若a=2,b=3,c=4,则cosC=( )ABCD3在ABC中,角,所对的边分别为,已知,则ABC的面积为( )A2BC4D4ABC中,则ABC一定是( )A锐角三角形B钝角三角形C等腰三角形D等边三角形5钝角ABC中,若,则最大边的取值范围是( )ABCD6如图,在ABC中,D是边上一点,则的长为( )ABCD7如图,从气球上测得正前方的河流的两岸,的俯角分别为,此时气球的高度是,则河流的宽度是( )ABCD8已知的面积为,则角的大小为( )ABCD9我国南宋著名数学家秦九韶提出了由三角形三边求三角形面积的“三斜求积”,设的三个内角所对的边分别为,面积为,则“三斜求积”公式为,若,则用“三斜求积”公式求得的面积为( )ABCD110已知的内角,的对边分别为,为角的角平分线,交于,则( )ABCD11已知在中,分别为内角,的对边,则周长的取值范围是( )ABCD12在平面四边形中,则的取值范围是( )ABCD第卷二、填空题:本大题共4小题,每小题5分13在中,角所对的边分别为,角等于,若,则的长为_14在中,则的面积为_15海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞,若要测量如图所示的蓝洞的口径,两点间的距离,现在珊瑚群岛上取两点,测得,则,两点的距离为_16在中,角,的对边分别为,若,且,则的取值范围为_三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤17(10分)在中,且(1)求边长;(2)求边上中线的长18(12分)已知的内角的对边分别为,若(1)若,求;(2)若且,求的面积19(12分)如图,在四边形中,已知,(1)求的值;(2)若,且,求的长20(12分)已知a,b,c分别是内角A,B,C的对边角A,B,C成等差数列,成等比数列(1)求的值;(2)若,求的周长21(12分)某市欲建一个圆形公园,规划设立,四个出入口(在圆周上),并以直路顺次连通,其中,的位置已确定,(单位:百米),记,且已知圆的内接四边形对角互补,如图所示请你为规划部门解决以下问题:(1)如果,求四边形的区域面积;(2)如果圆形公园的面积为万平方米,求的值22(12分)已知的内角,的对边分别为,(1)求内角的大小;(2)求的最大值单元训练金卷高三数学卷(B)第5单元 解三角形 答 案第卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1【答案】A【解析】由正弦定理可得,所以,所以,因,所以,故为锐角,所以,故选A2【答案】A【解析】a=2,b=3,c=4,根据余弦定理得到,故答案为A3【答案】D【解析】因为,所以由余弦定理,可得,所以ABC的面积为故选D4【答案】D【解析】ABC中,故得到,故得到角A等于角C,三角形为等边三角形故答案为D5【答案】A【解析】因为钝角ABC,所以,又因为,故选A6【答案】B【解析】由余弦定理可得,得到,故选B7【答案】D【解析】由题意可知:,由正弦定理,得,即河流的宽度,本题正确选项D8【答案】D【解析】,又的面积为,则,又,故选D9【答案】A【解析】,因为,所以,从而的面积为,故选A10【答案】A【解析】因为,由正弦定理得,即,解得,又由,所以,则,所以,又因为,所以为等腰三角形,所以,故选A11【答案】C【解析】根据三角形正弦定理得到,变形得到,因为,故答案为C12【答案】D【解析】由题意,平面四边形中,延长BA、CD交于点E,BC75,EBC为等腰三角形,E30,若点A与点E重合或在点E右方,则不存在四边形ABCD,当点A与点E重合时,根据正弦定理,算得,若点D与点C重合或在点C下方,则不存在四边形ABCD,当点D与点C重合时ACB30,根据正弦定理,算得,综上所述,AB的取值范围为故选D第卷二、填空题:本大题共4小题,每小题5分13【答案】【解析】因为角等于,所以由余弦定理可得,所以,故答案为14【答案】【解析】,由正弦定理可得,解得,可得,本题正确结果15【答案】【解析】由已知,ACD中,ACD15,ADC150,DAC=15,由正弦定理得,BCD中,BDC15,BCD135,DBC=30,由正弦定理,所以,ABC中,由余弦定理,解得,则两目标A,B间的距离为,故答案为16【答案】【解析】因为,所以由正弦定理可得,又因为,所以由正弦定理可得,即,所以,因为,所以,因为,当且仅当时取等号,所以,所以,即,所以,故的取值范围为三、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤17【答案】(1);(2)【解析】(1),由正弦定理可知中:(2)由余弦定理可知:,是的中点,故,在中,由余弦定理可知:18【答案】(1);(2)2【解析】,由正弦定理可得,(1),由余弦定理,可得(2),由勾股定理可得,19【答案】(1);(2)【解析】(1)在中,由正弦定理,得因为,所以(2)由(1)可知,因为,所以在中,由余弦定理得因为,所以,即,解得或又,则20【答案】(1);(2)的周长为【解析】(1)角A,B,C成等差数列,即,成等比数列,(2)由(1)可知,即,由余弦定理可得,化简得,即,因此的周长为21【答案】(1);(2)或【解析】(1),在和中分别使用余弦定理得:,得,四边形的面积(2)圆形广场的面积为,圆形广场的半径,在中由正弦定理知:,在中由余弦定理知:,化简得,解得或22【答案】(1)(2)【解析】(1),即,由余弦定理得,由正弦定理得,即,即,变形得,解得,(2),由余弦定理得,化简得,当且仅当时等号成立,的最大值为

    注意事项

    本文(备战2020年高考数学一轮复习第5单元解三角形单元训练B卷理含.doc)为本站会员(荣***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开