车辆工程毕业设计210载重汽车驱动桥的设计.docx
-
资源ID:26833842
资源大小:17.54KB
全文页数:12页
- 资源格式: DOCX
下载积分:30金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
车辆工程毕业设计210载重汽车驱动桥的设计.docx
车辆工程毕业设计210载重汽车驱动桥的设计 摘要 驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。所以采用传动效率高的双级减速驱动桥已成为未来重载汽车的发展方向。 本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计。本文首先确定主要部件的结构型式和主要设计参数;然后参考类似驱动桥的结构,确定出总体设计方案;最后对主,从动锥齿轮,差速器圆锥行星齿轮,半轴齿轮,全浮式半轴和整体式桥壳的强度进行校核以及对支承轴承进行了寿命校核。本文不是采用传统的双曲面锥齿轮作为载重汽车的主减速器而是采用弧齿锥齿轮。 关键词:载重汽车;驱动桥;双级主减速器;全浮式半轴 I Abstract As a vehicle drive axle assembly of one of the four, and its performance will have a direct impact on vehicle performance, and it is particularly important for trucks. When using high-power engine torque output of large trucks to meet the current fast, heavy-duty high-efficiency, cost-effective and necessary, must be with an efficient, reliable bridge driver. Therefore, efficient use of transmission of a double-stage driver slow down the bridge has become a heavy-duty motor vehicles in the future development direction. In this paper, in the light of the traditional design of the drive axle of the truck driver for the design of the bridge. This article first identified the major components of the structure and main design parameters; then a similar reference to the drive axle of the structure to determine the overall design of the program; on the final owner, Gear Driven cone, cone differential planetary gear, axle gear, the all-floating Half-bridge and the overall strength of the shell to carry out verification as well as support for the life of bearing checking. This article is not a traditional double-bevel gear surface as the main reducer truck instead of using the spiral bevel gear, as a hope that this will continue to study this issue. Keyword truck driver bridge double-stage bridge slowdown spiral bevel gear II 目录 摘要 . I Abstractb () 第1章绪论 (1) 第2章驱动桥总成的结构型式 (4) 2.1 驱动桥总体方案的确定 (4) 2.1.1 非断开式驱动桥的结构分析 (4) 2.1.2 断开式驱动桥的结构分析 (5) 2.2 本设计驱动桥结构形式的确定 (6) 第3章主减速器 (8) 3.1 主减速器的结构形式 (8) 3.1.1 主减速器的齿轮类型 (8) 3.1.2 主减速器主从动锥齿轮的支承形式 (8) 3.2 主减速器的基本参数选择与设计 (9) 3.2.1 主减速比的确定 (9) 3.2.2 主减速器计算载荷的确定 (10) 3.2.3 主减速器基本参数的确定 (12) 3.2.4 主减速器传动齿轮的几何尺寸计算 (13) 3.2.5主减速器轴承的选择 (14) 3.2.6 主减速器齿轮的材料及热处理 (19) 3.2.7 主减速器传动齿轮的强度校核 (23) 第4章差速器 (23) 4.1 对称式圆锥行星齿轮差速器的设计 (23) 4.1.1 差速器齿轮基本参数的确定 (23) 4.1.2 差速器齿轮的几何尺寸的确定 (23) III 4.2 差速器齿轮的强度校核 (24) 第5章驱动半轴设计 (26) 5.1 全浮式半轴的杆部直径的初选 (26) 5.2 全浮式半轴的强度校核 (26) 5.3 半轴花键的强度校核 (26) 第6章驱动桥桥壳 (28) 6.1 桥壳的结构形式 (28) 6.1.1 整体式桥壳结构形式分析 (28) 6.1.2 铸造整体式桥壳结构形式分析 (28) 6.1.3 钢板冲压焊接整体式桥壳 (28) 6.1.4 钢管扩张成形整体式桥壳 (29) 6.2 桥壳的受力分析与强度校核 (29) 6.2.1 桥壳的静弯曲应力计算 (29) 6.2.2 在不平路面冲击载荷作用下桥壳的强度校核 (30) 6.2.3 汽车以最大牵引力行驶时的桥壳强度校核 (31) 6.2.4 汽车紧急制动时的桥壳强度校核 (33) 结论 (35) 致谢 (36) 参考文献 (37) 附录1 (38) 附录2 (43) IV 第1章绪论 汽车驱动桥位于传动系的末端。其基本功用首先是增扭、降速、改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理的分配给左右驱动车轮;其次,驱动桥还要承受作用于路面或车身之间的垂直力,纵向力和横向力,以及制动力矩和反作用力矩等。驱动桥一般由主减速器,差速器,车轮传动装置和桥壳组成。 对于重型载货汽车来说,要传递的转矩较乘用车和客车以及轻型商用车都要大得多,以便能够以较低的成本运输较多的货物,选择功率较大的发动机,这就对传动系统有较高的要求,而驱动桥在传动系统中起着举足轻重的作用。随着目前国际上石油价格的上涨,汽车的经济性日益成为人们关心的话题,这不仅仅只对乘用车,对于载货汽车,提高其燃油经济性也是各商用车生产商来提高其产品市场竞争力的一个法宝。因为一般情况下重型载货汽车所采用的发动机都是大功率,大转矩的。装载质量在十吨以上的载货汽车的发动机,最大功率在140KW以上,最大转矩也在700N·m 以上,百公里油耗是一般都在34升左右。为了降低油耗,不仅要在发动机的环节上节油,而且也需要从传动系中减少能量的损失。这就必须在发动机的动力输出之后,在从发动机传动轴驱动桥这一动力输送环节中寻找减少能量在传递的过程中的损失。在这一环节中,发动机是动力的输出者,也是整个机器的心脏,而驱动桥则是将动力转化为能量的最终执行者。因此,在发动机相同的情况下,采用性能优良且与发动机匹配性比较高的驱动桥便成了有效节油的措施之一。所以设计新型的驱动桥成为新的课题。设计驱动桥时应当满足如下基本要求: (1)选择适当的主减速比,以保证汽车在给定的条件下具有最佳的动力性和燃油经济性; (2)外廓尺寸小,保证汽车具有足够的离地间隙,以满足通过性的 - 1 - 要求; (3)齿轮及其他传动件工作平稳,噪声小; (4)在各种载荷和转速工况下有较高的传动效率; (5)具有足够的强度和刚度,以承受和传递作用于路面和车架或车身 间的各种力和力矩;在此条件下,尽可能降低质量,尤其是簧下质 量,减少不平路面的冲击载荷,提高汽车的平顺性; (6)与悬架导向机构运动协调; (7)结构简单,加工工艺性好,制造容易,维修,调整方便。 目前我国正在大力发展汽车产业,采用后轮驱动汽车的平衡性和操纵性都将会有很大的提高。后轮驱动的汽车加速时,牵引力将不会由前轮发出,所以在加速转弯时,司机就会感到有更大的横向握持力,操作性能变好。维修费用低也是后轮驱动的一个优点,尽管由于构造和车型的不同,这种费用将会有很大的差别。如果你的变速器出了故障,对于后轮驱动的汽车就不需要对差速器进行维修,但是对于前轮驱动的汽车来说也许就有这个必要了,因为这两个部件是做在一起的。 所以后轮驱动必然会使得乘车更加安全、舒适,从而带来可观的经济效益。通过对驱动桥的设计,使所选车型能达到最佳的动力性和经济性,并采用标准化设计,使其修理保养方便,进行优化设计,可靠性设计等内容,更好地学习并掌握现代汽车设计与机械设计的全面知识和技能。 本设计驱动桥车型技术参数如表1-1所示。 表1-1 技术参数 - 2 - - 3 - 第2章驱动桥总成的结构 2.1驱动桥总体方案的确定 驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构叫复杂,但可以大大提高汽车在不平路面上的行驶平顺性。 2.1.1 非断开式驱动桥的结构分析 非断开式驱动桥是指主减速器和半轴装在整体的桥壳内,该形式车桥和车轮只能随路面的变化而变化,使车桥整体上下跳动。由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进 - 4 - 一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。 在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型载货汽车上,有时采用蜗轮式主减速器,它不仅具有在质量小、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。 2.1.2 断开式驱动桥的结构分析 断开式驱动桥区别于非断开式驱动桥的明显特点在于前者没有一个连接左右驱动车轮的刚性整体外壳或梁。断开式驱动桥的桥壳是分段的,并且彼此之间可以做相对运动,所以这种桥称为断开式的。另外,它又总是与独立悬挂相匹配,故又称为独立悬挂驱动桥。这种桥的中段,主减速器及差速器等是悬置在车架横粱或车厢底板上,或与脊梁式车架相联。主减速器、差速器与传动轴及一部分驱动车轮传动装置的质量均为簧上质量。两侧的驱动车轮由于采用独立悬挂则可以彼此致立地相对于车架或车厢作上下摆动,相应地就要求驱动车轮的传动装置及其外壳或套管作相应摆动。 汽车悬挂总成的类型及其弹性元件与减振装置的工作特性是决定汽车行驶平顺性的主要因素,而汽车簧下部分质量的大小,对其平顺性也有显著的影响。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况及对各种地形的适应性比较好,由此可大大地减小汽车在不平路面上行驶时的振动和车厢倾斜,提高汽车的行驶平顺性和平均行驶速度,减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。但是,由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对行驶平顺性要求较高的轿车及一些越野汽车上,且后者多属于轻型以下的越野汽车或多桥驱动的重型越野汽车。 - 5 - 由于要求本课题设计的是9.95吨级的后驱动桥,要设计这样一个级别的驱动桥,一般选用非断开式结构以与非独立悬架相适应,且非断开式驱动桥结构简单、造价低廉、工作可靠,查阅资料,可参照国内相关货车的设计,最后本课题选用非断开式驱动桥。该种形式的驱动桥的桥壳是一根支撑在左右驱动车轮的刚性空心梁,一般是铸造或钢板冲压而成,主减速器,差速器和半轴等所有传动件都装在其中,此时驱动桥,驱动车轮都属于簧下质量。 重型汽车驱动桥技术已呈现出向双级化发展的趋势,主要是双级驱动桥还有以下几点优点: (l) 双级减速驱动桥是驱动桥中结构最简单的一种,制造工艺简单,成本较低,是驱动桥的基本类型,在重型汽车上占有重要地位; (2) 重型汽车发动机向低速大转矩发展的趋势,使得驱动桥的传动比向小速比发展; (3) 随着公路状况的改善,特别是高速公路的迅猛发展,重型汽车使用条件对汽车通过性的要求降低。因此,重型汽车不必像过去一样,采用复杂的结构提高通过性; (4) 与带轮边减速器的驱动桥相比,由于产品结构简化,双级减速驱动桥机械传动效率提高,易损件减少,可靠性提高。 双级桥产品的优势为双级桥的发展拓展了广阔的前景。从产品设计的角度看,重型车产品在主减速比小于6的情况下,应尽量选用双级减速驱动桥。 所以此设计采用双级主减速器再配以整体式桥壳。 2.2本设计驱动桥结构形式的确定 普通非断开式驱动桥,由于其结构简单,造价低廉,工作可靠,广泛地用在各种载货汽车及公共汽车上,在多数的越野汽车上也采用这种结构。 - 6 - 普通的非断开式驱动桥的特点是一根支撑在左右驱动车轮上的刚性空心梁,而主减速器、差速器及半轴等传动件都装在其中。这时,整个驱动桥和驱动车轮的质量以及传动轴的部分质量都属于汽车的非悬挂质量,使汽车的非悬挂质量较大,这是普通非断开式驱动桥的一个弱点,这种驱动桥和轮毂,制动器及制动鼓的总质量约占一般汽车底盘质量的11%-16%。 图2-1 非断开式驱动桥 - 7 -