24142圆周角.ppt
24.1.4.2 24.1.4.2 圆周角圆周角 回顾:圆周角定理及推论?回顾:圆周角定理及推论? 思考:判断正误:思考:判断正误:1.同弧或等弧所对的圆周角相等()同弧或等弧所对的圆周角相等()2.相等的圆周角所对的弧相等()相等的圆周角所对的弧相等()3.90圆周角所对的弦是直径()圆周角所对的弦是直径()4.直径所对的角等于直径所对的角等于90( )5.长等于半径的弦所对的圆周角等于长等于半径的弦所对的圆周角等于30( )新课讲解:新课讲解: 若一个多边形若一个多边形各顶点都在同一各顶点都在同一个圆上个圆上,那么,这个多边形叫做圆,那么,这个多边形叫做圆内接多边形,这个圆叫做这个多边内接多边形,这个圆叫做这个多边形的外接圆形的外接圆。OBCDEFAOACDEBOOC CA AB BD D如图,四边形如图,四边形ABCDABCD为为OO的内接四边的内接四边形;形;OO为四边形为四边形ABCDABCD的外接圆。的外接圆。 OOCDBA如图:圆内接四边形如图:圆内接四边形ABCDABCD中,中,AA C C 180 同理同理B BD D180180圆的内接四边形的对角互补。圆的内接四边形的对角互补。 BAD+BCD=360定理定理1.(1)四边形四边形ABCD内接于内接于 O,则,则A+C=_ B+ADC=_;若若B=80,则,则ADC=_ CDE=_(2)四边形四边形ABCD内接于内接于 O,AOC=100则则B=_D=_ (3)四边形四边形ABCD内接于内接于 O, A:C=1:3,则则A=_, 180 100 80 50 130 45 EDBAC80DBACO100 180 2.2.若若ABCDABCD为圆内接四边形,则下列为圆内接四边形,则下列哪个选项可能成立哪个选项可能成立( )(A)A B C D 1 2 3 4 (B)A B C D 2 1 3 4 (C)A B C D 3 2 1 4 (D)A B C D 4 3 2 1B(4)梯形梯形ABCD内接于内接于 O,ADBC, B=750,则则C=_ 75返回圆的内接梯形一定是梯形。圆的内接梯形一定是梯形。DBACO3、如图,四边形、如图,四边形ABCD内接于内接于 O,如果如果BOD=130,则则BCD的度数是(的度数是( ) A、115 B、130 C、65 D、504. 如图,等边三角形如图,等边三角形ABC内内 接于接于 O,P是是AB上的上的 一点,则一点,则APB= 。DABCOAPBC例例 如图如图OO1 1与与OO2 2都经过都经过A A、B B两点,两点,经过点经过点A A的直线的直线CDCD与与OO1 1交于点交于点C C,与,与OO2 2 交于点交于点D D。经过点。经过点B B的直线的直线EFEF与与OO1 1 交于点交于点E E,与,与OO2 2 交于点交于点F F。求证:求证:CEDFCEDF12OOOOF FA AB BE EC CD D1CEDFCEDFEEF F180180FF1 1180180、1 1E EABFDABFD是是OO1 1的内接四边形的内接四边形ABECABEC是是OO2 2的内接四边形的内接四边形连结连结ABAB12OOOOF FA AB BE EC CD D1巩固练习巩固练习:1 1、如图,四边形如图,四边形ABCDABCD为为OO 的内接的内接四边形,已知四边形,已知BODBOD100100,求,求BADBAD及及BCDBCD的度数。的度数。A AOOD DB BC CO OC CD DB BA A2 2已知:如图,四边形已知:如图,四边形ABCDABCD是是圆的内接四边形并且圆的内接四边形并且ABCDABCD是是平行四边形。平行四边形。求证:四边形求证:四边形ABCDABCD是矩形。是矩形。拓展练习拓展练习如图,点P是 O外一点,点A、B、Q是 O上的点。(1)求证P AQB(2)如果点P在 O内, P与AQB有怎样的关系?为什么?OBpQA