外文翻译--生态景观设计的原则.docx
外文翻译-生态景观设计的原则 生态景观设计的原则Principles of Ecological LandscapeDesign 学部(院):建筑与艺术学院 专业:艺术设计(环境艺术设计) 学生姓名: 学号: 指导教师: 完成日期: 4 ComplexCreations: Designing and ManagingEcosystems A dragon?y?itsoverthesun- mirroredsurfaceofapond,snappingathatchingmosquitoesbeforecom- ing to rest on an overhanging rush. This is an ecosystem: animals, plants, and theirphysicalenviron- mentlinked together in the exchange of energy and materials. If this were our pond,ourecosystem,wewouldhaveitall:abeautifullandscapefeature,enlivenedbycreaturesweneve rhadto carefor,andhassle-freepestcontrol. Ecosystemslikethisponddoquiet,crucialwork,keepingalivethebiosphereofwhichweareapart.W heresuchanaturalpond,oraforestor?oodplain,exists,itbehoovesustoprotectit.Whereonehasbeen degraded,wewouldbewellservedtorestoreit(seechap.10).Butwheresuchecosystemshavebeenplo wedunderorpavedover,wecanendeavortoreplacethemby?llingthebuiltenvironmentnot justwithlaw nsandplazasandfountainsbutwithecosystems. Anecosystemconsistsofallofthelivingorganismsinanareaalongwiththeirphysicalenviron-ment,anditspropertiesarisefromtheinteractionsbetweenthesecomponents.Anoceanbayisanecos ystem,asisanalpinemeadoworagreenroof.Perhapsbecauseoftheirclearboundaries,lakes andstreams wereimportantobjectsofstudyinthedevelopmentofecosystemecology.Wherebound- ariesarelessdistinct,thelimitsofanecosystemcanbe de?ned,evenarbitrarily,basedonthequestionanecol ogistisstudyingortheboundariesofa designers site. Designedlandscapesalreadybringtogetheramanipulatedphysicalenvironmentandlivingor-ganisms.Theydonotnecessarilyfunctionasnaturalecosystemsdo,however.Theyaredisconnect-ed,toooftenwastefulanddemanding,orelsetheysimplyfailtothrive.Whenwesucceedincreat-ingintegratedecosystems,theresultscanberemarkable.Lifecanspringforth,almostunbidden.Waste scanbetransformedintoresources.Thevariousmembersofalivingcommunitycanreacha tentativebalance.Thebuiltenvironmentcanpurifywater,protectusfrom?oods,andstrengthenour sense ofwell-being. T.Beck,PrinciplesofEcologicalLandscapeDesign,DOI10 .5822/978-1-61091-199-3_4,?2022TravisBeck Complex Creations: Designing and Managing THE ECOSYSTEMCONCEPT Theideathatplantsandanimalsandtheirenvironmentformanintegratedwholeisattherootofthedi sciplineofecology,althoughittookdecadestoarticulateinitsmodernform.In1887,inanaddresstothe Peoria Scienti?cAssociation,StephenForbesdescribedthelakeas“amicrocosm.”In orderforascientisttounderstandanyonespecies,heargued, Hemustevidentlystudyalsothespeciesuponwhichitdependsforitsexistence,andthevariouscondi tions upon which these depend. He must likewise study the species with which it comesincompetition,andtheentiresystemofconditionsaffectingtheirprosperity;andbythetimehe has studiedallthese suf?ciently hewill?ndthathehasrunthroughthewholecomplicatedmechanismofthe aquaticlifeofthelocality,bothanimalandvegetable,ofwhichhisspeciesformsbutasingleelement. (Forbes 1887:537) Theterm microcosm didnotenterintowiderecologicaluse.However,theideaofmanyorganisms formi ngalargerentitygainedexpressionintheturn-of-the-centuryconceptoftheclimaxcommu- nity(seechap.2).ThisconceptwassingledoutbyBritishecologistArthurTansleyina1935articleprovoca tively titled“TheUseandAbuseof VegetationalConceptsand Terms.”Theabusetowhichhereferredwas theinsistenceofClementsandotherecologistsonapplyingtheterm organism tothe climaxcommunity.“Thereisnoneedtowear ythe reader,”hewrote,“withalistofthepointsinwhichthebiotic communitydoes n ot resemblethesingleanimal orplant”(Tansley1935:290).However,hedidnot holdbackfrommentioningtha ta communitysprocessofdevelopmentisverydifferentfromthelife cycle of animals and plants. At best, Tansley offered, vegetation might resemble a“quasi-organism,”thoughonenotnearlysowellintegratedasahumansocietyorahiveofbees.Thisacceptance ofa quasi-organismalstatusforcommunitiesdifferentiatesTansleys criticismofClementsianecology fromGleasons purelyindividualisticfocus.Thereisacertaintruthtotheideaoftheclimaxcommunitybeing wellintegrateda ndself-regulating,Tansleyargued,butitcouldbestatedmoreaccuratelyanotherway. Tansleypreferredtothinkintermsofintegratedsystems.Hisnotionofsystemswasborrowedfrom thephysical sciences.“These ecosystems,aswemaycall them,”hewrote,“areofthemost variouskinds andsizes.Theyformonecategoryofthemultitudinousphysicalsystemsoftheuniverse,whichrange from the universe as a whole down to the atom” (Tansley1935: 299). An essential partof T ansleysdescriptionoftheecosystemisthatheincludedinitnotonlyalloftheplantsandanimalsandoth erlivingthingsinagiven“weboflife”butalsothe entiretyofthephysicalcomponentsoftheir environmen t,suchassoil,sunlight,andwater. CREATEECOSYSTEMS Builtlandscapesalsohavephysicalandbiologicalcomponents:crudely,inindustryterms, hardscapeandsoftscape.Toooften,thesecomponentsarefarfromintegrated.Thehardscapeissetin respo nse to programmatic needs, and plants are tucked into the remaining spaces. If thephysicalenvironmentisnotrightforthebiologicalcomponents,thenitisaltered,byprovidingirrigati on,forinstance (seechap.1). Complex Creations: Designing and Managing Consideratypicallandscapepond.Anestateownermightpayacontractortoclearanarea,ex-cavateahole,lineit,?llitfullofwaterfromawell,andtrimthewholesetupneatlywithrocksorlawnandpe rhapsafewaquaticplantsonaplantingshelf.Aswaterevaporatesfromtheunshadedpond,thewellpum pkicksinandtopsoffthepond.Evensuburbanhomeownerswanttheirownpondsand waterfalls,fullofmunicipalwaterandlinedwithdwarfconifersorJapaneseiris(Irisensata)sittinglike rockyp uzzlepiecesontheirlawns.Thesesystemsare fullyarti?cial,rely onsupplementalwater,and often require ?ltration or even sterilization to remain aesthetically acceptable. Physical andbiological elements are divorced from each other and from theirsurroundings. Bycontrast,apondthatisconceivedofasanecosystemfusesphysicalandbiologicalelements intoawholethatintegrateswith,ratherthansitsapartfrom, ndscapearchitectsAndropogonAssociatescreatedsuchapondonapropertyinGreenwich,Co nnecticut.Naturally,throughout NewEnglands forests,inthespringsmalldepressionsintheland-scape?llwithwater,which in?ltrates asgroundwaterlevelsdropinthesummer.Thesevernalpoolsprovid eimportanthabitatforamphibianssuchassalamandersandfrogs.Onthispropertysuchadepressionexi sted,setagainstagraniticoutcrop,onlyithadlongbeen?lledwithbranches,leaves,andothergreenwast ebygenerationsofgardeners.WhenColinFranklin,foundingprincipalatAndro- pogon,discoveredtherockydellandthesmallspringatitsbase,hesawanopportunity.AndropogonAssoci atesdesign philosophy haslongbeentobuild“d ynamic,holisticsystems,”thatis,ecosystems.Franklins approachwastolinethecenterofthedepressioninordertomaintainaminimumwaterlevelbutleavethe edgesunlined.Waterfromthespringiscollectedinasumpbeneaththepondandpumpedviaaslenderw aterfallofftherockoutcropandintothepond.Inspringthepond over?ows,recharginggroundwaterinthe area(?g.4.1).Themarginsareplantedwithtreesandotherplantsthat areadaptedtothisseasonal?ooding.Betweentheopenwater,theplantedwetlandatthepondsedge,a ndtheseasonalwetlandbeyond,thedesignprovidesdiversehabitat(seechap.7).When waterlevelsdroptotheleveloftheliner,thewettedmarginsdry,mimickingthecycleofvernalpools.Ifwa terlevelsdropfurther,thesumppumpandwaterfallcanmakeupthedifferencefromthe rechargedgroundwater.Becausethepondisintheforest,however,evaporationandthe needformakeupwaterareminimal. Thisforestedpondisnowahuboflifeandthecenteroftheentirelandscape.Ratherthancreatea sterilewaterfeatureofdissociatedelements,Andropogoncreatedanecosystem,withnaturalphysicalcycle sandplantsandanimalsadaptedtothem. ECOSYSTEMSARECOMPLEXADAPTIVESYSTEMS Ecologists understanding of the multitudinous systems of the universe has evolved since Tansleywrote hiscritiqueofClementsin1935.Mostrecently,ecosystemshavebeenregardedascomplex adap- tivesystems.SimonLevin(1998,1999),abiologistatPrinceton,isachiefproponentofthisview.Incompl exadaptivesystems,asexplainedbyLevin,heterogeneousindividualagentsinteractlocallytocreatelar gerpatterns,andtheoutcomeofthoselocalinteractionsaffectsthefurtherdevelopmentofthesystem(?g.4.2).Itiseasytoseehowthisappliestoecosystems.Theplantsandanimals,rocks andwateranddetrit usthatmakeupapondarealldifferent,yettheyinteracttocreatearecognizable Complex Creations: Designing and Managing Figure4.1SchematicdesignoftheAndropogon- designedpondecosystem.Duringnormaldryweatherconditions(a)alinerandgroundwaterpumpmaintainaper manentwaterlevel.Duringnormalwetseasonconditions (b) over?ow enters peripheral seasonal wetlands and recharges groundwater. (Drawing byColinFranklin.) systemwithpropertiesofitsown.Ifaplantthatproducesmorebiomasscompetitivelyexcludesothe rs alongthe ponds margins,thentheaccumulationofdetritusinthepond,thepopulationsof bottomfeeders,andotherecosystempropertieswillallbeaffected. Levinfurtherdescribedfourcharacteristicsofcomplexadaptivesystems.Theyarediverse,ag-gregated,nonlinear,andconnected by?ows.Ecosystemsincludeindividualorganismswithdiversechar acteristics.Throughtheirinteractions,theindividualagentsinanecosystembecomegrouped intolargerorganizationalentities.Forexample,populationsaregroupsofinteractingindividualsofthe sames pecies(seechap.2).Themostaccuratewaytoviewaggregationisthroughthecompositionofahierarchy (seechap.9).Nonlinearitymeansthatsmallchangesinanecosystemcanleadtooutsizedeffects.Remov alofasinglekeystonespecies,forinstance,canchangethecompositionofanentire community(seechap. 7).Nonlinearityalsoreferstothefactthatecosystemsareaffectedbyhistoryas muchasbypresentconditio ns.Finally,asweshallseeinthefollowingsections,ecosystemsclearly exhibit?owsofenergyandmaterial sthatconnectalltheirindividualparts. LET CONSTRUCTED ECOSYSTEMSSELF-DESIGN If ecosystems are complex adaptive systems that develop from the interaction oftheir componentsandtheeventsofhistory,thensuccessfulecosystemsareunlikelytospringforthfromour headsfullyformedbutshouldemergeinsteadthroughaprocesswemightcallself-design. Complex Creations: Designing and Managing Figure4.2Turingpatterns,likethisone,areanexampleofacomplexsystemformedfromlocalinteractions.Inthisc ase,each pixels colorisdeterminedbythecolorofthesurroundingpixelsaccordingtoacomputer algorithm.Startingfromarandomi nitialstate,thepatterncontinuestoevolve.(ImagebyJonathanMcCabe,underCreativeCommons2.0GenericLicense.) BillMitschandhiscolleaguesexploredself-designattheWilmaH.SchiermeierOlentangyRiver WetlandResearchParkinColumbus,Ohio(Mitschetal.1998).Theyintentionallyleftoneoftwobasinsintheir newlycreatedexperimentaloxbowunvegetated.Theyknewthatwind,water,andanimalswould bringinne wplantssoonenough,andtheywantedtoseehowcloselytheunplantedwetlandwouldresembletheon etheyplanted.Within3years,thetwowetlandswereremarkablysimilarintermsofvegetativecover,dive rsityofplants,waterchemistry,andseveralothermeasuresofecologicalfunc- tion(?g.4.3).Thiscongruenceresultsnotsimplyfromtheunplantedwetlandcomingtoresemblethepla ntedonebutfrombothwetlandschangingto re?ect siteconditionsandmigrations.Ofthethirteenorigin alspeciesintheplantedwetland,fourdiedoff.Thesurvivingspecieswerejoinedbyanaddi-tional?fty-twounplantedspecies.BecausethewetlandswereconnectedhydrologicallytothenearbyOlentangyRi ver,thenatural in?ow ofspecieshadamuchgreater in?uence onthemakeupoftheplant communitiesinthetwowetlandsthandidtheinitialplantingofonebasin. Thesuccessofthetwobasinsasself-designedecosystemsisindicatedbytheOlentangyRiver Wetlands designation under the RamsarConvention as a Wetland of International Importance. Complex Creations: Designing and Managing Figure4.3AerialviewofthetwoOlentangyRiverWetlands.(CourtesyofWilliamJ.Mitsch,WilmaH.Schierm eierOlentangy River Wetland ResearchPark.) ECOSYSTEMSAREORGANIZEDINTROPHICLEVELS As complex adaptive systems, ecosystems are animated by the interactions betweentheirconstituentpartsandthe?owsthatconnectthem.Inthe1940sayoungAmericanecologi st,RaymondLindeman, suggestedawayofanalyzingecosystemsintermsofenergy?ow.AswithForbesbeforehim,Linde-mans focuswasonlakes.After5yearsof?eldworkonthesmallCedarBogLakeneartheUniversityofMin nesota,LindemansignedupforapostdoctoralyearatYaleUniversitywithG.EvelynHutchinson (wholateradvisedRobertMacArthuronhisstudyofresourcepartitioninginwarblers)(seechap.3).Duri ngthatyearheandHutchinsonworkedonthearticlethatwas tobecome“The TrophicDynamicAspectof Ecology”(Lindeman1942).Tragically,Lindemandiedattheageof27,afewmonthsbe forehisarticle,whichwasinitiallyrejectedasbeingtootheoretical,was?nallypublishedinthe?agshipj ournaloftheEcologicalSocietyofAmerica.Theideasheputforthhavehadalasting impactonthe?eldofecosystemecology. Lindemans focus was on the trophic, or “energ y-availing,” relationships within an ecosystem.Bor- rowingfromGermanlimnologistAugustThienemann,heabstractedthefamiliarfoodwebsthatnatural-istsandecologistshadproducedforlakesandothersystemsintotrophiclevels:Producersareorgan-ismssuchasplantsandphytoplanktonthatobtaintheirenergyfromthesun,consumersareorganisms suchaszooplanktonand?shthatobtaintheirenergyfromeatingproducers,anddecomposersarethe bacteriaandfungithatobtaintheirenergyfrombreakingdowntheorganicsubstancesinthewastes and remainsofotherorganisms.Byabstractinganecosystemtotrophiclevels,Lindeman sacri?ced a Complex Creations: Designing and Managing certainamountofbiologicalreality.Healsocreatedtheproblemofhowtoclassifyorganismsthateat both producers and consumers. There can be several levels of consumers in anecosystem,although earlier ecologists had noted that rarely are there more than ?ve trophic levels intotal.Lindemans analysisexplainedthisphenomenon. Unlikethechemicalelements,whichcan cycleinde?nitely inanecosystem(seechap.6),energy ?ow sthroughanecosysteminonedirectiononly:fromthesuntoproducerstoconsumerstosecond- aryconsumerstodecomposers.Ateachtransferofenergybetweentrophiclevels,Lindemannoted,a certainamountislost (?g.4.4).Primaryconsumerssuchasbrowsingsnailsexpendacertainamountof energyjustlivingand ?ndingproducerstoeat.Someofthemdiebeforetheyareeatenbybenthic predat ors.Someoftheenergycontainedinthebodiesofthosethatareeatenistiedupintissuessuch Figure4.4Lindemans diagramofthefoodwebanddifferenttrophiclevelsinageneralizedlake.Energyandnu trientsenterthesystemfromtheoutside.Thesearecapturedandtransformedbybothmicroscopicand macrosco pic producers (phytoplanktersand pondweeds, A 1). Primary consumers (zooplankters and browsers, A 2)eattheproducersandinturnareeatenbysecondaryconsumers(planktonpredatorsandbenthicpre dators,A 3).Tertiaryconsumers(planktonpredatorsandbenthicpredators,A 4)areatthetopofthe foodchain.Alltheorganicmatterinthesystemultimatelycyclesthroug