模拟电子技术的课程设计报告.docx
模拟电子技术的课程设计报告 目录 1 课程设计的目的与作用 (1) 1.1课程设计的目的 (1) 1.2课程设计的作用 (1) 2 设计任务、及所用multisim软件环境介绍 (1) 2.1设计任务:电压串联负反馈放大电路频率响应 (1) 2.2 Multisim软件环境介绍 (1) 2.3 Multisim软件界面介绍 (2) 3 电压串联负反馈放大电路模型的建立 (2) 4电压串联负反馈放大电路频率响应理论分析及计算 (2) 5仿真结果分析 (2) 6设计总结和体会 (2) 7参考文献 (2) 1 课程设计的目的与作用 1.1课程设计的目的 学习电压串联负反馈电路,掌握其电路工作原理。通过对它的学习,能够学会对其中频电压放大倍数,对电压串联负反馈放大电路的频率响应进行分析,利用Multisim软件对其进行仿真实现,对其进行交流分析,记录图形和数据;培养学生动手操作能力,分析能力,切实提高学生综合能力。 1.2课程设计的作用 本课题的研究意义在于,通过使用Multisim软件实现电压串联负反馈放大电路的频率响应分析,从而进一步巩固模拟电子技术基础知识,学习使用Multisim软件等的相关专业知识。本文先对设计和仿真电路的方法进行简单介绍,然后画出电压串联负反馈放大电路的电路图,并对其进行频率响应的测试,然后得出结论。 2 设计任务、及所用multisim软件环境介绍 2.1设计任务:电压串联负反馈放大电路频率响应 画出电压串联负反馈放大电路图,对电压串联负反馈放大电路使用Multisim进行频率响应分析,要求熟练掌握Multisim软件的使用和仿真方法,写出实际实现过程,得出结论 2.2 Multisim软件环境介绍 Multisim是美国国家仪器(NI)推出的以Windows为基础的仿真工具,适用于板级的 模拟/数字电路板的设计工作。它包含了电路原理图的图形输入、电路硬件描述语言输入方式,具有丰富的仿真分析能力。 工程师们可以使用Multisim交互式地搭建电路原理图, 并对电路进行仿真。Multisim提炼了SPICE仿真的复杂容, 这样工程师无需懂得深入的SPICE技术就可以很快地进行捕 获、仿真和分析新的设计,这也使其更适合电子学习教育。Multisim登陆界面 通过Multisim和虚拟仪器技术,PCB设计工程师和电子学教育工作者可以完成从理论到原理图捕获与仿真再到原型设计和测试这样一个完整的综合设计流程。 NI Multisim软件结合了直观的捕捉和功能强大的仿真,能够快速、轻松、高效地对电路进行设计和验证。凭借NI Multisim,您可以立即创建具有完整组件库的电路图,并利用工业标准SPICE模拟器模仿电路行为。借助专业的高级SPICE分析和虚拟仪器,您能在设计流程中提早对电路设计进行的迅速验证,从而缩短建模循环。与NI LabVIEW和SignalExpress软件的集成,完善了具有强大技术的设计流程,从而能够比较具有模拟数据的实现建模测量。 突出优点: 1.通过直观的电路图捕捉环境, 轻松设计电路 2.通过交互式SPICE仿真, 迅速了解电路行为 3.借助高级电路分析, 理解基本设计特征 4.通过一个工具链, 无缝地集成电路设计和虚拟测试 5.通过改进、整合设计流程, 减少建模错误并缩短上市时间 2.3 Multisim软件界面介绍 启动Multisim,就会看到其主界面,主要是由菜单栏、系统工具栏、设计工具栏、元 件工具栏、仪器工具栏使用中元件列表、仿真开关、状态栏以及电路图编辑窗口等组成。如图1所示。 图1 Multisim软件编辑窗口 Multisim 10提供了丰富的元器件。这些元器件按照不同的类型和种类分别存放在若干个分类库中。这些元件包括现实元件和虚拟元件。所谓的现实元件给出了具体的型号,它们的模型数据根据该型号元件参数的典型值确定。而所谓的虚拟元件没有型号,它的模型参数是根据这种元件各种元件各种型号参数的典型值,而不是某一种特定型号的参数典型值确定。另外,Multisim 10元件库中还提供一种3D虚拟元件,这种元件以三维的方式显示,比较形象、直观.。Multisim 10容许用户根据自己的需要创建新的元器件,存放在用户元器件库中。如图2所示。 图2 用户元器件库图 Multisim 10提供了品种繁多、方便实用的虚拟仪器。比如数字万用表、信号发生器、示波器等17种虚拟仪器。点击主界面中仪表栏的相应的按钮即可方便地取用所需的虚拟 仪器。如图3所示。 图3 虚拟仪器图示 Multisim 10提供了各种不同功能的分析工具。点击分析按钮,即可拉出分析菜单,其中列出了Multisim 10的各种分析工具,例如直流工作点分析、交流分析、瞬态分析等。Multisim为用户提供了丰富的元器件,并以开放的形式管理元器件,使得用户能够自己添加所需要的元件。如图4所示。 图4 元器件库图示 3 电压串联负反馈放大电路模型的建立 由电压串联负反馈放大电路的工作原理和课程设计的基本要求,在Multisim软件中建立电路模型,如图5所示 图5 电压串联负反馈放大电路仿真模型图 4电压串联负反馈放大电路频率响应理论分析及计算 1.当开关断开无级间反馈时: 静态工作点如下: =/(+)* =- =/-() =- =/(+)* =- =/ =- 动态分析: =-?()/+(1+?) =+(1+?)26mA/ =+(1+?)26mA/ =-?()/ =* =+(1+?) = 2.开关断开,引入负反馈: 电压放大倍数: Auf=1+RF/ 输入输出电阻: = 5仿真结果分析 在电压串联负反馈放大电路仿真模型中,首先将开关k打开,利用Multisim的交流分析功能,测量无极间反馈时放大电路的波特图,分析结果如图6所示 图6 未引入级间反馈时的波特图 由图6可见,中频放大倍数约为130,当放大倍数下降至0.707倍时,下限频率约为55Hz,上限频率约为700kHz。 将电压串联负反馈放大电路仿真模型中的开关k合上,测量引入电压串联负反馈后放大电路的波特图,分析结果如图7所示 图7 引入级间反馈 由图7可见,中频电压放大倍数减小。 6设计总结和体会 在本次课程设计中,我首先加强了对串联电压放大电路频率响应的学习,同时加强了对其它相关理论知识的深入研究。课程设计中使用了Multisim仿真软件,对串联电压放大电路模拟仿真。使用Multisim仿真串联电压放大电路,并进行频率响应分析,能够很好学习串联电压放大电路,使电路的分析和数据的运算都变得简单明了。通过Multisim对输出信号频率特性进行交流分析,形象生动,既加深了我对串联电压放大电路的理解,同时又将所学到的知识进行相关模拟,联系实践生产活动,对今后