高一数学《111任意角》.doc
1.11 任意角教学目标(一) 知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念.(二) 过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写(三) 情感与态度目标1 提高学生的推理能力;2培养学生应用意识教学重点任意角概念的理解;区间角的集合的书写教学难点终边相同角的集合的表示;区间角的集合的书写教学过程一、引入:1回顾角的定义角的第一种定义是有公共端点的两条射线组成的图形叫做角.角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形二、新课:1角的有关概念:角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形始边终边顶点AOB角的名称:角的分类:负角:按顺时针方向旋转形成的角 正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角注意:在不引起混淆的情况下,“角 ”或“ ”可以简化成“ ”;零角的终边与始边重合,如果是零角 =0°;角的概念经过推广后,已包括正角、负角和零角练习:请说出角、各是多少度?2象限角的概念:定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角例1如图中的角分别属于第几象限角?B1yOx45°B2OxB3y30°60o例2在直角坐标系中,作出下列各角,并指出它们是第几象限的角 60°; 120°; 240°; 300°; 420°; 480°;答:分别为1、2、3、4、1、2象限角3探究:教材P3面终边相同的角的表示:所有与角终边相同的角,连同在内,可构成一个集合S | = + k·360 ° ,kZ,即任一与角终边相同的角,都可以表示成角与整个周角的和注意: kZ 是任一角; 终边相同的角不一定相等,但相等的角终边一定相同终边相同的角有无限个,它们相差360°的整数倍; 角 + k·720 °与角终边相同,但不能表示与角终边相同的所有角例3在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角120°;640 °;950°12答:240°,第三象限角;280°,第四象限角;129°48,第二象限角;例4写出终边在y轴上的角的集合(用0°到360°的角表示) 解: | = 90°+ n·180°,nZ例5写出终边在上的角的集合S,并把S中适合不等式360°720°的元素写出来4课堂小结角的定义;角的分类:负角:按顺时针方向旋转形成的角 正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角象限角;终边相同的角的表示法5课后作业:阅读教材P2-P5;教材P5练习第1-5题;教材P.9习题1.1第1、2、3题思考题:已知角是第三象限角,则2,各是第几象限角?解:角属于第三象限, k·360°+180°k·360°+270°(kZ)因此,2k·360°+360°22k·360°+540°(kZ)即(2k +1)360°2(2k +1)360°+180°(kZ)故2是第一、二象限或终边在y轴的非负半轴上的角又k·180°+90°k·180°+135°(kZ) 当k为偶数时,令k=2n(nZ),则n·360°+90°n·360°+135°(nZ) ,此时,属于第二象限角当k为奇数时,令k=2n+1 (nZ),则n·360°+270°n·360°+315°(nZ) ,此时,属于第四象限角因此属于第二或第四象限角