欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    漫谈对称、轴对称图形.doc

    • 资源ID:27004990       资源大小:301.50KB        全文页数:2页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    漫谈对称、轴对称图形.doc

    漫谈对称、轴对称图形 郑君威数学课程标准(实验稿)(一下简称课程标准)与原教学大纲比,在空间与图形方面增加了许多内容,其中图形与变换的内容很充实,且有层次。第一学段的学习从感知图形变换现象开始,学习特殊方向的平移和直观式地认识轴对称图形;第二学段增加90º旋转和平移、旋转、对称的画图,并初步体会图形的相似;第三学段比较系统地学习图形的轴对称、平移、旋转和相似。这样安排有螺旋上升的味道。小学阶段只是初步认识图形的变换,离定性地认识还有一定的距离,更不用说定量地研究了。在平移、旋转、对称这些概念中,最重要的是对称这一概念。对称在这里仅限于图形。其实对称在数学中占有一定的地位,与对称有关的概念如对称多项式、对称算子、对称空间、对称张量、对称化、对称原理等等都是数学上的重要概念。课程标准中提到的对称,不仅局限于图形,而且是仅指最简单的图形对称。按数学百科全书,所谓对称是“一个改变定向的正交变换”。例如,平面内关于一直线a的一个反射是一个对称。在它之下每一个点M映射到一点M,使得线段MM垂直于直线a且被它平分。a称作对称轴。“对称是一个几何图形的如下性质:在某个变换群G的作用下,被映射到自身上,这个群称为对称群。”(引自数学百科全书第五卷第106页)简单的情形,如果变换群G是一条直线,那么几何图形就是关于直线G的对称图形;如果变换群G是一个点,那么几何图形就是以点G为中心的对称图形。上述定义中“被映射到自身上”可见,对称图形是一个图形,轴对称图形、中心对称图形当然也是一个图形。以点O为中心的对称图形的涵义是,使得关于某点O旋转一个360º/n(n是一个整数)的角时映射到自身上,那么有一个n阶对称,且O称为对称中心。这里的旋转是在图形所在的平面内旋转。如正三角形是以它的重心为中心的3阶对称,推广之,正n边形是以它们的重心为中心的n阶对称。在图1中,n可以是4(旋转90°)或2(旋转180°),当n=2时就是我们课程标准中所说的中心对称图形。同样地,“课程标准”中的轴对称图形是关于一直线的阶对称的最简单的情形。所谓关于一直线的阶对称是“图形关于某直线(对称轴)旋转360º角而映到自身上”(引文同上)。当时,就成了所谓轴对称图形了。这里的旋转不是平面内的旋转,而是空间的旋转。例如立方体(如图)有直线作为对称轴的阶对称,且有直线作为对称轴的阶对称。这里的阶数n,它不是对称轴的个数。如正方形有对称轴4条,但它关于直线的对称只是2阶。立方体图2中,属于3阶对称的对称轴(如AB)有4条,属于4阶对称的对称轴(如CD)有3条。小学里的轴对称图形仅指关于直线的2阶对称,因此轴对称图形是平面图形,且是一个图形。圆是特殊的图形,它是以圆心为对称中心的n阶对称图形;它是以任意一条直径所在的直线为对称轴的2阶对称。球是以任意一条直径所在的直线为对称轴的n阶对称。此外还有平移对称,如图案设计中的二方连续,就属于平移对称;还有由平移和旋转结合起来的对称,如螺旋形的转盘楼就是螺旋对称。这些虽然都不在小学数学学习范围之内,但当学生有可能提到这类现象时,我们不要断然否定它们是对称现象,它们只是不属于轴对称图形和中心对称图形而已。A (图1) (图2) 对轴对称图形的教学,必须按照课程标准的要求进行。数学教学的任务就是要引导学生研究学习内容,解决四个问题:是什么,为什么,有什么用,发展下去能产生什么。小学数学教学不可能完全按照这个思路来组织教学,但至少要使学生了解(理解、掌握)是什么,怎么形成的,为什么要这样说,在现实中有什么作用,等等。按照上面的教学思路,首先要使学生明白概念。如果我们要对轴对称图形下一个定义,可以这样下:一个平面图形围绕直线a旋转180º而映射到自身上。这个定义虽然比较严密,显然不适合小学。对于小学生来说,这个定义难于理解的地方有三处,一是图形和直线是什么关系,二是怎样旋转,三是对“映射到自身上”怎么理解。这三个问题,对小学生来说是很不容易理解的,特别是“映射”,太抽象了。因此在小学里,不必教给学生严密的轴对称图形的定义。但对轴对称图形的涵义应该使学生有所了解。教学时,我们可以用浅近的语言来帮助学生理解,也就是说,我们可以通过对轴对称图形下一个非数学化的定义。如:将一个平面(可以省略“平面”)图形对折,如果折痕两边的图形能完全重合,这个图形就叫做轴对称图形,折痕叫做对称轴。这里的“对折”这一词儿,不是数学概念,用它来代替“围绕直线a旋转180º”。原来的意思是整个图形围绕直线旋转,现在是由折痕将平面图形分成和两部分,或者是其中的一部分围绕折痕旋转180°,或者和都围绕折痕相对旋转,其和是180°,这些都可以。这样就改成部分图形围绕直线旋转,难度降低了。有的中学教材,将围绕直线的旋转说成是围绕直线翻折,这样难度就下降 了。由于小学生对 “对折”,有一定的生活经验(在幼儿园就学过折纸),教师不必作如上解释,只要引导学生反复操作就行,通过操作学生会知道对折是怎么一回事。用“ 折痕两边的图形能完全重合”代替“映射到自身上”,是把抽象的数学术语换成学生比较容易理解的语言,关于“完全重合”,教学时不必作深入的探究,学生能初步的意会。从上面的教学思路说明,小学数学里的概念教学的要求,往往是很低的。如上面说的轴对称图形这一概念的教学,在小学里不是要求学生掌握,也不是理解,只是初步的了解。通过操作,有一点直观性的了解。因为,在小学里,没有教给学生比较严密的轴对称图形的定义,更没有要求学生必须掌握轴对称图形的性质的教学目标。

    注意事项

    本文(漫谈对称、轴对称图形.doc)为本站会员(asd****56)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开