欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    大一高数导数的概念ppt课件.ppt

    • 资源ID:27075215       资源大小:1.81MB        全文页数:39页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    大一高数导数的概念ppt课件.ppt

    有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1引例引例导数的定义导数的定义导数的几何意义与物理意义导数的几何意义与物理意义可导与连续的关系可导与连续的关系求导举例求导举例第一节第一节 导数的概念导数的概念(derivative)第二章第二章 导数与微分导数与微分有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。2例例1 1直线运动的瞬时速度问题直线运动的瞬时速度问题一质点作直线运动一质点作直线运动,已知路程已知路程 s 与时间与时间 t 的的试确定试确定t0时的时的瞬时速度瞬时速度v(t0).一、一、引例引例).(tss 关系关系),()(00tsttss )( tv 这段时间内的这段时间内的平均速度平均速度在每个时刻的速度在每个时刻的速度.解解.ts 若运动是若运动是匀速的匀速的, 平均速度就等于质点平均速度就等于质点质点走过的路程质点走过的路程,00ttt 从时刻从时刻有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。3它越近似的它越近似的定义为定义为 )(0tv,)()(lim000ttsttst 并称之为并称之为t0时的时的瞬时速度瞬时速度v(t0).若运动是若运动是非匀速非匀速的的,)( tv 平均速度平均速度是这段是这段时间内运动快慢的平均值时间内运动快慢的平均值,t 越小越小,表明表明 t0 时运动的快慢时运动的快慢. 因此因此, 人们把人们把 t0时的速度时的速度ts 0lim t此式既是它的定义式此式既是它的定义式,又指明了它的计算又指明了它的计算瞬时速度是路程对时间的变化率瞬时速度是路程对时间的变化率.注注方法方法,有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。40 x处切线的斜率处切线的斜率.00(,)M xy已知曲线的方程已知曲线的方程确定点确定点 如果割线如果割线MN绕点绕点M旋转而趋向极限位置旋转而趋向极限位置MT,C在点在点M处的处的切线切线.如图如图,),(xfy x TxyO)(xfy CN M割线的极限位置割线的极限位置 切线位置切线位置.例例2 2曲线在一点的切线问题曲线在一点的切线问题有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。5),(00yxM设设00tanxxyy ,)()(00 xxxfxf N tan k00)()(xxxfxf ).,(yxN割线割线MN的斜率为的斜率为,0 xx 切线切线MT的斜率为的斜率为C沿曲线沿曲线,M0 xx TxyO)(xfy CN M0limxx有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。6 就其实际意义来说各不相同就其实际意义来说各不相同, 关系上确有如下的共性关系上确有如下的共性:但在数量但在数量上述两例上述两例,分别属于运动学、几何学中的问题分别属于运动学、几何学中的问题,),(xfy 1. 在问题提法上在问题提法上,都是已知一个函数都是已知一个函数求求y关于关于x在在x0处的变化率处的变化率.2. 计算方法上计算方法上,(1) 当当y随随 x均匀变化时均匀变化时,用除法用除法.(2) 当变化是非均匀时当变化是非均匀时,需作平均变化率的需作平均变化率的xyx 0limxxfxxfx )()(lim000极限运算极限运算:有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。7定义定义的某个邻域内的某个邻域内在点在点设函数设函数0)(xxfy xxfxxfxy )()(00的的称称为为)(xf,00时时变到变到当自变量从当自变量从xxx )()()(00 xfxxfyxfy 的增量的增量函数函数之之比比变变量量的的增增量量 x 与自与自平均变化率平均变化率. .二、导数的定义二、导数的定义,有有定定义义有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。8, 0 x如如处可导处可导在在并说并说0)(xxfxy 存在存在,平均变化率的极限平均变化率的极限:)1()()(lim000 xxfxxfx 0lim x.)(0处的导数处的导数在在xxf(derivative)或有导数或有导数.则称此极限值为则称此极限值为,0 xxy )(0 xf 或或,dd0 xxxy 0d)(dxxxxf 可用下列记号可用下列记号处不可导或导数不存在处不可导或导数不存在.当极限当极限(1)式不存在时式不存在时, 就说函数就说函数 f (x)在在x0有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。9注:注:当当(1)式的极限为式的极限为有时也说在有时也说在x0处导数是正处导数是正(负负)无穷大无穷大,正正(负负)无穷时无穷时,但这时但这时导数不存在导数不存在.有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。10注注导数定义可以写成多种形式导数定义可以写成多种形式:,)()(lim)(0000 xfxfxf .)()(lim)(0000 xfxfxf hhhh h h )(0 xf或或xxfxxfxfx )()(lim)(0000 xx 0,)()(lim000 xxxfxfxx 0 xx )0(f 特别特别,.)0()(lim0 xfxfx 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。11关于导数的说明关于导数的说明(1) 点导数是因变量在点点导数是因变量在点x0处的变化率处的变化率,它反映了它反映了因变量随自变量的变化而变化的快慢程度因变量随自变量的变化而变化的快慢程度.(2) 如果函数如果函数y = f (x)在开区间在开区间 I 内的每点处都可导内的每点处都可导,就称函数就称函数 f (x)在开区间在开区间 I 内可导内可导.,y 记作记作),(xf xydd.d)(dxxf或或(3) 对于任一对于任一都对应着都对应着 f (x)的一个确定的导数值的一个确定的导数值., Ix 这个函数叫做原来函数这个函数叫做原来函数f (x)的的导函数导函数.有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。12xxfxxfyx )()(lim0.)()(lim)(0hxfhxfxfh 注注 )(0 xf即即或或)(xf 0 xx 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。13例例 用导数表示下列极限用导数表示下列极限.5)()3(lim,)()1(0 xafxafaxxfx 求求可可导导在在设设.2)()(lim, 2)()2(0hafhafafh 求求已已知知有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。1435解解xafxafx5)()3(lim)1(0 )()3(lim0afxafx xafxafx3)()3(lim530 x3).(53af 解解hafhafh2)()(lim)2(0 )()(lim0afhafh )(21af 211 h hxfhxfxfh)()(lim)(0000 hxfhxfxfh)()(lim)(0000 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。15右导数右导数4. 单侧导数单侧导数 左导数左导数 )(0 xf )(0 xf000()()lim;xf xxf xx 000()()lim.xf xxf xx 000( )()limxxf xf xxx000( )()limxxf xf xxx(left derivative)(right derivative)0()fx0()fx有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。16处的可导性处的可导性.处可导处可导在在0)(xxf,)()(00都存在都存在和右导数和右导数左导数左导数xfxf 且相等且相等此性质常用于判定此性质常用于判定分段函数分段函数在在 分段点分段点)(af 且且)(bf 和和.,)(上可导上可导在闭区间在闭区间就说就说baxf如果如果)(xf在开区间在开区间),(ba内可导内可导,都存在都存在,有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。17求求增增量量)1(算算比比值值)2(求求极极限限)3(三、求导举例三、求导举例( (几个基本初等函数的导数几个基本初等函数的导数) ) 步步 骤骤 );()(xfxxfy ;)()(xxfxxfxy .lim0 xyyx 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。18例例.)()(的导数的导数为常数为常数求函数求函数CCxf 解解hxfhxfxfh)()(lim)(0 0lim h. 0 0)( C即即CC h0)( C有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。19和差化积公式:和差化积公式:sinsin2sincos22sinsin2cossin22coscos2coscos22coscos2sinsin22有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。20例例,sin)(xxf 设设函函数数解解hxhxxhsin)sin(lim)(sin0 22sin)2cos(lim0hhhxh .cos x .cos)(sinxx .)(sin)(sin4 xxx 及及求求即即同理可得同理可得.sin)(cosxx 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。21例例.)(的的导导数数为为正正整整数数求求函函数数nxyn 解解hxhxxnnhn )(lim)(0! 2)1(lim1210 nnnhhhxnnnx1 nnx1)( nnnxx即即更一般地更一般地)(.)(1Rxx 如如)(1 x11)1( x21x 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。22例例.)1, 0()(的导数的导数求函数求函数 aaaxfx解解haaaxhxhx 0lim)(haahhx1lim0 .lnaax aaaxxln)( .)(xxee 即即01lim,hhah 1,hat令令(1)logtah (1)00a1limlimloglnhthtatha 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。23例例.)1, 0(log的导数的导数求函数求函数 aaxya解解hxhxyaahlog)(loglim0 1(log)lnaxxa .1)(lnxx 0log (1)limahhxh0ln(1)limlnhhxha0limlnhhxha即即1.lnxa有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。24例例.0|)(处处的的可可导导性性在在讨讨论论函函数数 xxxf解解,|)0()0(hhhfhf hfhfh)0()0(lim0 , 1 hfhfh)0()0(lim0 . 1 ),0()0( ff.0)(点点不不可可导导在在函函数数 xxfy即即hhh 0limhhh 0limxy xyO有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。251.几何意义几何意义表表示示)(0 xf )( ,tan)(0为倾角为倾角 xf)(xfy 曲线曲线,)(,(00切线的斜率切线的斜率处的处的在点在点xfxM即即四、导数的几何意义与物理意义四、导数的几何意义与物理意义0 x xyO)(xfy CT M有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。26特别地特别地:)(,()(, 0)()1(000 xfxxfyxf在点在点则曲线则曲线若若 ;轴轴的切线平行于的切线平行于Ox,)()2(0 xf若若)(,()(00 xfxxfy在在点点则则曲曲线线 .轴轴的切线垂直于的切线垂直于Ox).)(000 xxxfyy .0)()()(10000 xfxxxfyy:)(,()(00处的切线方程为处的切线方程为在点在点曲线曲线xfxxfy :)(,()(00的的法法线线方方程程为为在在点点曲曲线线xfxxfy 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。27例例,)2 ,21(1斜斜率率处处的的切切线线的的在在点点求求等等边边双双曲曲线线xy 解解得切线斜率为得切线斜率为21 xyk21)1( xx2121 xx. 4 .方程和法线方程方程和法线方程并写出在该点处的切线并写出在该点处的切线由由导数的几何意义导数的几何意义,所求切线方程为所求切线方程为法线方程为法线方程为),21(42 xy),21(412 xy. 044 yx. 01582 yx即即即即有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。282.物理意义物理意义路程对时间的导数为物体的瞬时速度路程对时间的导数为物体的瞬时速度;.ddlim)(0tststvt 变速直线运动变速直线运动有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。29电量对时间的导数为电流强度电量对时间的导数为电流强度;.ddlim)(0tqtqtit 为物体的线为物体的线(面面,体体)密度密度.交流电路交流电路非均匀的物体非均匀的物体 质量对长度质量对长度(面积面积,体积体积)的导数的导数有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。30该点必连续该点必连续. .定理定理如果函数如果函数则函数在则函数在五、可导与连续的关系五、可导与连续的关系在点在点x处可导处可导, ,)(xf证证,)(可导可导在点在点设函数设函数xxf)(lim0 xfxyx )(xfxyxxxfy )(0lim x0 .)(连续连续在点在点函数函数xxf)0(0 x 即即根据函数极限与无穷小的关系,可知根据函数极限与无穷小的关系,可知所以所以, ,lim0 x有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。31如如, ,0处处不不可可导导但但在在 x该定理的逆定理不一定成立该定理的逆定理不一定成立.注注,0)(处处连连续续在在 xxxf.)(0的的角角点点为为xfx 连续是可导的必要条件连续是可导的必要条件, ,不是可导的充分条件不是可导的充分条件. .xy xyO有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。32例例.0,0, 00,1sin)(处处的的连连续续性性与与可可导导性性在在讨讨论论函函数数 xxxxxxf解解,1sin是有界函数是有界函数x01sinlim0 xxx.0)(处连续处连续在在 xxf0)(lim)0(0 xffx,0处处在在 x xy,1sinx ,0时时当当 x.0)(处不可导处不可导在在 xxf xx01sin)0(x 001lim sin,xx 不存在有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。33 .,)(002xxbaxxxxxf当当当当设设为了使为了使 f(x) 在在x0处可导处可导, 解解 首先函数必须在首先函数必须在x0处连续处连续.由于由于 )(lim0 xfxx )(lim0 xfxx )(0 xf故应有故应有.200 xbax ,20 x,0bax .20 x应如何选取应如何选取a,b ?有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。34又因又因 )(0 xf000( )()limxxf xf xxx02200limxxxxxx02x )(0 xf000( )()limxxf xf xxx0200()limxxaxbxxx000()()limxxaxbaxbxx200 xbax 000limxxaxaxxxa)(0 xf 02x 从而从而,当当,20 xa f(x) 在在x0处可导处可导.,20 xb 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。35导数的实质导数的实质: 增量比的极限增量比的极限;导数的几何意义导数的几何意义: 切线的斜率切线的斜率;函数可导一定连续,但连续不一定可导函数可导一定连续,但连续不一定可导; 求导数最基本的方法求导数最基本的方法: 由定义求导数由定义求导数.六、小结六、小结;)()()(000axfxfaxf 有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。36判断可导性判断可导性不连续不连续,一定不可导一定不可导.连续连续直接用定义直接用定义;看左右导数是否存在且相等看左右导数是否存在且相等.有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。37思考题思考题(是非题是非题),)(. 10点点可可导导在在若若xxf?| )(|0点点必必可可导导是是否否在在xxf非非,)(xxf 如如处处在在0 x可导可导;但但| )(|xf处处在在0 x不可导不可导.有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。38,| )(|. 20点点可可导导在在若若xxf?)(0点必可导点必可导在在是否是否xxf非非,如如 0, 10, 1)(xxxf1| )(| xf处可导;处可导;在在0 x但但)(xf处处在在0 x不可导不可导.有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。有利于学习和创新的组织管理机制,创造充满活力的创新激励机制,以市场为导向,以顾客价值追求为中心的企业文化氛围,依赖既开放又相互信任的合作环境。39作业作业习题习题2-1(82-1(86页页) )6;9(偶);(偶);11;14;16;171,2,3写在书上写在书上

    注意事项

    本文(大一高数导数的概念ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开