2022年高中物理难题解析 .pdf
运动学基本概念变速直线运动(P21) *12 甲、乙、丙三辆汽车以相同的速度经过某一路标,以后甲车一直做匀速直线运动,乙车先加速后减速运动,丙车先减速后加速运动,它们经过下一路标时的速度又相同,则() 。2 ()甲车先通过下一个路标()乙车先通过下一个路标()丙车先通过下一个路标()三车同时到达下一个路标解答由题知, 三车经过二路标过程中,位移相同,又由题分析知,三车的平均速度之间存在:乙v甲v丙v,所以三车经过二路标过程中,乙车所需时间最短。本题的正确选项为(B) 。(P21)*14 质点沿半径为R 的圆周做匀速圆周运动,其间最大位移等于_,最小位移等于_,经过94周期的位移等于_2 解答位移大小为连接初末位置的线段长,质点做半径为R 的匀速圆周运动,质点的最大位移等于2R,最小位移等于0,又因为经过T49周期的位移与经过T41周期的位移相同,故经过T49周期的位移的大小等于R2。本题的正确答案为“2R;0;R2”(P22)*16 一架飞机水平匀速地在某同学头顶飞过,当他听到飞机的发动机声从头顶正上方传来时,发现飞机在他前上方约与地面成60角的方向上,据此可估算出此飞机的速度约为声速的_倍 (2000 年,上海卷 )5 解答飞机发动机的声音是从头顶向下传来的,飞机水平作匀速直线运动, 设飞机在人头顶正上方时到地面的距离为Y,发动机声音从头顶正上方传到地面的时间为t,声音的速度为v0,于是声音传播的距离、飞机飞行的距离和飞机与该同学的距离组成了一直角三角形,由图2-1 可见:X=v t,Y=v0t,YXtan300,图 21 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 23 页 - - - - - - - - - 由式、式和式得:58.0330vv,本题的正确答案为“0.58” 。(P22)*17 天文观测表明,几乎所有远处的恒星(或星系)都以各自的速度背离我们而运动,离我们越远的星体,背离我们运动的速度(称为退行速度) 越大;也就是说, 宇宙在膨胀 不同星体的退行速度v 和它们离我们的距离r 成正比,即v = Hr式中 H 为一常量,已由天文观察测定为解释上述现象,有人提出一种理论,认为宇宙是从一个大爆炸的火球开始形成的假设大爆炸后各星体以不同的速度向外匀速运动,并设想我们就位于其中心,则速度大的星体现在离我们越远这一结果与上述天文观测一致由上述理论和天文观测结果,可估算宇宙年龄T,其计算式为T _根据过去观测,哈勃常数H = 3102m/sl. y. ,其中 l. y.( 光年 )是光在 1a(年)中行进的距离,由此估算宇宙的年龄约为_a (1999 年上海卷)6 解答由于宇宙是从一个大爆炸的火球开始形成的,又假设大爆炸后各星体以不同的速度向外做匀速直线运动,速度越大的星体离爆炸中心越远,由匀速直线运动公式可求得各星体从爆炸到现在的运动时间,即为宇宙年龄T,2810310336002436511HHrrvsTs 10101a。本题的正确答案为“H1;10101” 。(P22)*18 甲乙两地相距220km,A 车用 40km/h 的速度由甲地向乙地匀速运动,B 车用 30km/h的速度由乙地向甲地匀速运动两车同时出发,B 车出发后1h,在途中暂停2h 后再以原速度继续前进,求两车相遇的时间和地点3 解答由题意知3h 以后, B 车行驶了 30 km,而 A 车行驶了120km,这时两车还相距70 km,到两车相遇还需1h。所以两车相遇的时间为出发后4h,两车相遇的地点为距甲地160km。(P22)*19 一辆汽车向悬崖匀速驶近时鸣喇叭,经 t1=8s 后听到来自悬崖的回声;再前进 t2=27s,第二次鸣喇叭,经t3=6s 又听到回声已知声音在空气中的传播速度v0=340m/s,求:汽车第一次鸣喇叭时与悬崖的距离;汽车的速度3 解答设汽车第一次鸣喇叭时与悬崖的距离为s,汽车的速度为v,由图 2-2 知:2s= v0t1+ vt1,第二次鸣喇叭时汽车与悬崖的距离为:s=s- v(t1+ t2),与式类似关系可得:图 2-2 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 23 页 - - - - - - - - - 2 s= v0t3+ vt3,由于 v0=340m/s,t18s,t227s,t36s,代入数据解得:s1400m,v10m/s。所以汽车第一次鸣喇叭时与悬崖的距离为1400m,汽车的速度为10m/s。(P22)*20 轮船在河流中逆流而上,下午7 时,船员发现轮船上的一橡皮艇已失落水中,船长命令马上掉转船头寻找小艇经过一个小时的追寻,终于追上了顺流而下的小艇如果轮船在整个过程中相对水的速度不变,那么轮船失落小艇的时间是何时?3 解答以流动的水为参照物,落水的橡皮艇相对水是静止的,又由于轮船在整个过程中相对水的速度大小不变,从开始寻找小艇到追上小艇,经过了一个小时,根据运动的对称性可知,从轮船失落橡皮艇到开始寻找小艇的时间也一定是一个小时,所以轮船失落小艇的时间是下午6 时。(P22)*21 图 2-3(原图2-8)是在高速公路上用超声波测速仪测量车速的示意图,测速仪发出并接收超声波脉冲信号。根据发出和接收到的信号间的时间差,测出被测物体的速度。图2-4(原图2-9)中 p1、p2是测速仪发出的超声波信号,n1、n2分别是 p1、p2由汽车反射回来的信号设测速仪匀速扫描,p1、p2之间的时间间隔t = 1.0s,超声波在空气中传播的速度是 v = 340m/s,若汽车是匀速运动的,则根据图2-9 可知,汽车在接收到p1、p2两个信号之间的时间内前进的距离是_m,汽车的速度是_m/s (2001 年,上海卷) 8 解答如图 2-5 所示,设汽车两次接收到信号的位置分别要A、B 两处,从题图2-4 可读出 p1、p2之间所占的刻度为3.5-0.5=3 个刻度,所对应的时间间隔t = 1.0s,这样可得测速仪两次接收到回波的时间分别为:0.132.11ts0.4s,0. 139 .02ts=0.3s,由图 2-5 知:24.0340211tvsm=68m,23 .0340222tvsm=51m,0 1 2 3 4 p1 n1 n2 p2 图 2-3图 2-4图 2-5 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 23 页 - - - - - - - - - 所以汽车在两次接收到信号之间运动的距离为s=s1- s2=(68-51)m=17m 。汽车通过这段位移的时间由题图24 可算出:t =0 .131 . 195.3s=0.95s,所以汽车的速度是95.017 tsvm/s=17.9m/s,本题的正确答案为“17 ;17.9” 。(P23)*23 如图2-6(原图2-10)所示,一辆实验小车可沿水平地面(图中纸面)上的长直轨道匀速向右运动有一台发出细激光束的激光器装在小转台M 上,到轨道的距离MN 为 d = 10m,转台匀速转动, 使激光束在水平面内扫描,扫描一周的时间为T = 60s光束转动方向如图中箭头所示当光束与MN 的夹角为45时,光束正好射到小车上如果再经过t = 2.5s光束又射到小车上,则小车的速度为多少?(结果保留两位数字)(2000 年,全国卷) 8 解答在时间t 内,光束转过的角度为:=Tt360= 15,如图 2-7 所示,本题有两种可能:(1)光束照射到小车时,小车正在接近N 点,t 内光束与MN 的夹角从45变为30,小车速度为:v1=tL1,由图可知L1=d(tan45-tan30),所以v1=tL1(tan 45tan30 )10(tan 45tan30 )2.5dtm/s1.7m/s。(2)光束照到小车时,小车正在远离N 点,t 内光束与MN 的夹角从45变为 60,小车的速度为:v2=tL2(tan60tan45 )10(tan 60tan45 )2.5dtm/s2.9m/s,所以小车的速度可能为1.7m/s 或 2.9m/s。(P23)*24如图 2-8(原图 2-11)所示,一个带滑轮的物体放在水平面上,一根轻绳固定在C 处,通过滑轮B 和 D 牵引物体, BC 水平,以水平恒速v 拉绳上自由端时,物体沿水光左右N M d 图 2-6 图 2-7 B D v C 图 2-8 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 23 页 - - - - - - - - - 平面前进求当跨过B 的两绳夹角为时,物体的运动速度为多少?10 解答设经 t 时间物体由B 运动到 B,如图 2-9 所示,使 DE=DB ,则 D 端绳子运动的距离 s 为sBEBB,当 t0,可以认为B EBD,则cos1cossBBBBBB,又0limtsvt,0limtBBvt物,可得1cosvv物,所以物体的运动速度为1 cosvv物匀变速直线运动(P24)*8 火车的速度为8 m/s,关闭发动机后前进了70 m 时速度减为6m/s,若再经过50 s,火车又前进的距离为()3 () 50 m () 90 m () 120 m () 160 m 解答火车在关闭发动机后,作匀减速直线运动,加速度为:7028622212122svvam/s2-0.2 m/s2,从 6m/s 到停止所需时间为:2.06022avts=30s 50s,所以火车在50 s 前已停止,火车还能前进的距离为:)2.0(26202222avsm=90m,本题的正确选项为(B) 。(P24)*9 一个从静止开始作匀加速直线运动的物体,从开始运动起, 连续通过三段位移的时间分别是 1s、2s、3s,这三段位移的长度之比和这三段位移上的平均速度之比分别是()3 2232 ; 23 23; 2232 23; 11 35; 23解答由题知,物体通过的第一段位移为:s1=2121a,B D v C 图 2-9 BE 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 5 页,共 23 页 - - - - - - - - - 通过的第二段位移为:s2=2321a2121a821a,通过的第三段位移为:s3=2621a2321a2721a,所以这三段位移的长度之比为23;平均速度之比为2232。本题的正确选项为(B) 。(P25)*14 所图 2-10(原图 2-15)所示,光滑斜面AE 被分成四个相等的部分,一物体由A 点从静止释放,下列结论不正确的是()4 ()物体到达各点的速率vBvCvDvE=1232 ()物体到达各点所经历的时间:DCBEtttt3222()物体从A 到 E 的平均速度Bvv()物体通过每一部分时,其速度增量vBvA= vCvB= vDvC= vEvD解答由asvt22可得 vBvCvDvE=1232;由221ats代入对应的s 可得:DCBEtttt3222;因 AB BE1 3,所以 B 点为 AE 段的中间时刻,作匀变速直线运动的物体,中间时刻的瞬时速度等于这一段的平均速度,即Bvv;由22ABvv22BCvv22CDvv22DEvv得:ABvvBCvvCDvvDEvv,本题的正确选项为(D) 。(P25)*15 一物体由静止开始做匀加速运动,它在第n 秒内的位移是s,则其加速度大小为()3 ()221sn()21sn()22sn()21sn解答第 n 秒内的位移是s 为:22) 1(2121naans,整理后得:122nsa,本题的正确选项为(A) 。(P25)*16 A、B、C 三点在同一直线上,一个物体自A 点从静止开始做匀加速直线运动,经过B 点的速度为v,到 C 点的速度为2v,则 AB 与 BC 两段距离大小之比是()3 A B C D E 图 2-10 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 23 页 - - - - - - - - - () 14 () 13 () 12 () 11 解答由于avavvsABAB22222,avavvsBCBC232222,由式和式得SABSBC13 本题的正确选项为(B) 。(P25)*17 一列火车由静止从车站出发,做匀加速直线运动一位观察者站在这列火车第一节车厢的前端,经过2s,第一节车厢全部通过观察者所在位置;全部车厢从他身边通过历时6s设各节车厢长度相等,且不计车厢间距离,则这列火车共有_节车厢;最后2s 内从他身边通过的车厢有_节;最后一节车厢通过观察者需要的时间是_s4 解答设每节车厢长为L0,火车全长为L,则21021atL,2221atL,由于 t1=2s,t2=6s,解、式知L9L0;最后 2s内从观察者身边通过的车厢长为:02252021421621Laaas;设前 8 节车厢通过观察者所需时间为t3,则230218atL,由式和式可得t35.66s,所以最后一节车厢通过观察者需要的时间是0.34s。本题的正确答案为“9 ;5;0.34” 。(P25)*18 如图 2-11(原图 2-16)所示,物体自O 点由静止开始做匀加速直线运动,A、B、C、D 为其轨道上的四点,测得AB=2m,BC=3m,CD=4m且物体通过AB、BC、CD 所用的时间相等,求OA 间的距离 3 解答作匀变速直线运动的物体,中间时刻的瞬时速度等于这一段的平均速度,设物体通过 AB、BC、CD 各段所用的时间均为t0,则02tBCABvB,02tCDBCvC,O A 图 2-11 C D B 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 23 页 - - - - - - - - - 又0atvvBC,2CABvvv,由于 AB=2m,BC=3m,CD=4m解、式可得:023tvA,201ta,avOAA221.125m,所以 OA 间的距离为1.125m。(P25)*19 在正常情况下,火车以54km/h 的速度匀速开过一个小站现因需要,必须在这一小站停留,火车将要到达小站时,以-0.5m/s2的加速度做匀减速运动,停留2 分钟后,又以0.3m/s2的加速度出小站,一直到恢复原来的速度求因列车停靠小站而延误的时间5 解答设火车匀速运动的速度为v,进小站做匀减速运动时的加速度为1a,位移为1s,时间为1t,出小站做匀加速运动时的加速度为2a,位移为2s,时间为2t,由v54km/h=15m/s ,)5.0(215202121avsm=225m,5.015011avts=30s,3.0215202222avsm=375m,3.01522avts=50s,火车因进小站在减速、停留、加速过程中共用时(3012050)s=200s,如正常情况下,这一过程只需用时:1537522521vssts=40s , 所以因列车停靠小站而延误的时间为160s (P26)名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 8 页,共 23 页 - - - - - - - - - *23 某同学在测定匀变速运动的加速度时,得到了几条较为理想的纸带,已知在每条纸带每 5 个计时点取好一个计数点,两个计数点之间的时间间隔为0.1s,依打点时间顺序编号为 0、1、2、3、4、5,由于不小心,纸带被撕断了,如图2-12(原图 2-21)所示,请根据给出的 A、B、C、D 四段纸带回答:在 B、C、 D 三段纸带中选出从纸带A 上撕下的那段应是_打 A 纸带时,物体的加速度大小是_3 解答(1)把 01、12、23、34、45 各点的距离记为s1、 s2、s3、 s4和 s5,作匀加速直线运动的物体相邻相等时间间隔位移差相等,即s相等,则412133()sssss,)(441215sssss,由于 s130.0cm ,s2=36.6cm代入上式得s449. 8cm,s556.4cm。因此“ B”是从纸带A上撕下的部分。(2)由2221.010)0.306.36(Tsam/s2=6.6 m/s2。本题的正确答案为“B;6.6 m/s2” 。(P27)*25 物体在斜面顶端由静止匀加速下滑,最初4s 内经过路程为s1,最后 4s 内经过的路程 s2,且 s2s18m,s1s212,求斜面的全长6 解答由 s2s18m,s1s212得 s1=8m,s216m ,设物体在斜面上下滑的加速度为a,斜面全长为s,斜面上下滑的总时间为t,则最初 4s的位移s12121at,2214822tsam/s2=1 m/s2,最后 4s的位移s22,2)4(2121taat,其中 s216m ,a1m/s2代入上式可解得t6s,22612121atsm=18m,30.0cm 36.6cm 49.8cm 54.0cm 62.2cm 0 1 2 3 4 4 5 5 4 A B C D 图 2-12 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 9 页,共 23 页 - - - - - - - - - 所以斜面的全长为18m。(P27)*26 摩托车以速度v1沿平直公路行驶,突然驾驶员发现正前方离摩托车s 处,有一辆汽车正以v2的速度开始减速,且v2v1,汽车的加速度大小为a2为了避免发生碰撞,摩托车也同时减速,求其加速度至少需要多少?5 解 答以 前 方 减 速 运 动 的 汽 车 为 参 照 物 , 则 摩 托 车 相 对 汽 车 的 相 对 初 速 为210vvvr,相对汽车的相对加速度为21aaar,刚与汽车不相碰时,摩托车相对汽车的相对位移为ssr,设摩托车从开始减速到摩托车与汽车速度相同所需时间为t,摩托车从开始减速到汽车停止所需时间为t ,有22avt,21022vvsvvsvsttrrrr,摩托车与汽车刚不相碰时,汽车还未停止的条件是:tt即(212vvs22av) ,这时,以前方减速运动的汽车为参照物,有rrrsva220,svvaa2)(22121,222112)(asvva,故当212vvs22av时,为了避免发生碰撞,摩托车加速度至少需要22212)(asvv。当212vvs22av时,摩托车与汽车相碰前,汽车已停止,这时汽车的位移为:22222avs,摩托车的位移为:12112avs,名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 10 页,共 23 页 - - - - - - - - - 摩托车与汽车刚不相撞的条件是:sss21,解、式得savvaa22221212,故当212vvs22av时,为了避免发生碰撞,摩托车加速度至少需要savva2222122。(P27)*27 利用打点计时器研究一个约1.4m 高的商店卷帘窗的运动将纸带粘在卷帘底部,纸带通过打点计时器随帘在竖直面内向上运动打印后的纸带如图2-13(原图 2-22)所示,数据如表格所示纸带中AB、BC、CD每两点之间的时间间隔为0.10s,根据各间距的长度,可计算出卷帘窗在各间距内的平均速度v平均可以将 v平均近似地作为该间距中间时刻的瞬时速度v(1)请根据所提供的纸带和数据,绘出卷帘窗运动的v-t 图线(2) AD 段的加速度为m/s2,AK 段的平均速度为m/s(2001 年,上海卷 )8 解答(1)要作出v-t 图线,首先要求出不同时刻的瞬时速度,根据题设条件可以将卷帘窗在各间距内的平均速度v平均近似地作为该间距中间时刻的即时速度v由于两点之间的时间间隔为0.10s,利用 v平均ts求出卷帘窗在各间距内的平均速度v平均作为该间距中间时刻的瞬时速度v,并找出对应的时刻填入表中间隔间距/cm v=v平均/ms-1 对应时刻 /s AB 5.0 0.5 0.05 图 2-13 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 11 页,共 23 页 - - - - - - - - - 依表中数据在题给的v-t 图上描出对应的点,根据这点的分布情况分别用直线 、直线和折线连接起来,如图2-14 所示:(2)从 v-t 图线可以看出AD 段图线为直线,因v-t 图线的斜率值等于物体运动的加速度,所以05.035.05.00.2tvam/s2 =5.0 m/s2,AK 段的平均速度为:110)4105(2AKAKAKtJKBCABtAKvm/s1.39 m/s本题的正确答案为“5.0 ;1.39”(P28)*28 甲、乙、丙三辆车行驶在平直公路上,车速分别为6m/s、8 m/s、9 m/s当甲、乙、丙三车依次相距5m 时,乙车驾驶员发现甲车开始以1m/s2的加速度做减速运动,于是乙也立即做减速运动,丙车驾驶员也同样处理如图2-15(原图2-23)所示直到三车都停下来时均未发生撞车事故求丙车减速运动的加速度至少应为多大?8 解答由本节 26 题类似解答知:(1)乙与甲两车刚不相碰时,甲车还未停止,故为避免乙车与甲车相碰,乙车减速运动的加速度至少应为:2a12122)(asvv,其中 a11m/s2,v1=6m/s,v2=8m/s,s=5m 代入式得2a1.4m/s2,BC 10.0 1.0 0.15 CD 15.0 1.5 0.25 DE 20.0 2.0 0.35 EF 20.0 2.0 0.45 FG 20.0 2.0 0.55 GH 20.0 2.0 0.65 HI 17.0 1.7 0.75 IJ 8.0 0.8 0.85 JK 4.0 0.4 0.95 a3 v3 丙a2 v2 乙a1 v1 甲5m5m图 2-15图 2-14 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 12 页,共 23 页 - - - - - - - - - (2)丙车与乙车相碰前,乙车已停止,故为避免丙车与乙车相碰,丙车减速运动的加速度至少应为:a3savva2222322,其中 a21.4m/s2,v2=8m/s,v3=9m/s,s=5m 代入式得3a1.45m/s2所以丙车减速运动的加速度至少应为1.45m/s2。(P28)*29 一电梯,启动时匀加速上升, 加速度为 2m/s2, 制动时匀减速上升, 加速度为 1m/s2,楼高 52m求:若上升的最大速度为6m/s,电梯升到楼顶的最短时间是多少?如果电梯先加速上升,然后匀速上升,最后减速上升,全程共用时间为16s上升的最大速度是多少? 8 解答(1)设电梯作匀加速上升的末速为v,电梯升到楼顶的总时间为t,则加速运动过程上升的位移为:4221111vavvtvs,减速运动过程上升的位移为:2222222vavvtvs,匀速上升的位移为:)12()()(21213vvtvavavtvtttvs,由题意知:52321sss,解、式得:vvt5243,从式知,当vv5243,即v=8.3m/s 时,t 最短;而电梯上升的最大速度为6m/s,所以电梯升到楼顶的最短时间为v=6m/s 时,代入式可得t13.17s 。(2) 如果电梯先加速上升,然后匀速上升,最后减速上升,全程共用时间为16s,代入式可得v =4m/s(v =17.3m/s,不合题意舍去) ,故电梯上升的最大速度是4m/s。(P28)*30 A、B 两站相距 s,将其分成n 段,汽车无初速由A 站出发,分n 段向 B 站做匀加名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 13 页,共 23 页 - - - - - - - - - 速直线运动,第一段的加速度为a当汽车到达每一等份的末端时,其加速度增加na,求汽车到达 B 站时的速度 8 解答设第一段的末速1v,有nsav221,设第二段的末速2v,有)11(2)(22122nnnasnsnaavv,设第三段的末速3v,有)211(2)2(22223nnnnnasnsnaavv,到达 B 站时的速度为asnnnnnnnnnasvB13)12211(22,所以汽车到达B 站时的速度为asnn13。(P28)*31 如图 2-16(原图 2-24)所示,两等高光滑的斜面AC 和 ABC固定已知斜面总长AC = AB+BC,且让小球分别从两斜面顶端无初速滑下,到达斜面底部的时间分别为t 和 t若则 t 和 t应当是什么关系?8 解答如图 2-17 所示,在 AC 段取一点 B,使 AB = AB,由可知,小球到达B 点的速度小于小球到达B点的速度,即BBvv,又因为两斜面等高、光滑、不计在转折处的碰撞损失,由下落过程中机械能守恒知,在C 点和 C点速率相等,即CCvv,小球从 A 到 C 的时间为:22CBBBCABvvBCvABvBCvABt,小球从 A到 C的时间为:图 2-16 A C ABCC B图 2-17 A AC B 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 14 页,共 23 页 - - - - - - - - - 22CBBCBBAvvCBvBAvCBvBAt,由于BBvv,CCvv,AB = AB, BC = BC,比较、两式可得:tt,故 t 和 t的关系应当是tt。(P28)*32如图 2-18(原图 2-25)所示的滑轮组,物体1、2 分别具有向下的加速度a1和 a2,物体 3 具有向上的加速度a3,求 a1、a2、a3之间的关系解答物体 3 的运动与1、2 的运动都有联系,同时考虑三者之间的运动关系不好分析,可以先假设其中一个不动,分析物体 3与另一个的运动关系,然后再综合起来考虑设物体 2 不动, 1向下运动 s1,物体 3 将上升112s;再设物体1 不动, 2 向下运动 s2,3 将上升212s;当 1、2 同时运动时, 3 上升的高度3121122sss 因做匀变速运动的物体在相等时间内位移与加速度成正比,所以三者的加速度关系是31212aaa自由落体和竖直上抛运动(P29)*6 竖直上抛的物体,在上升阶段的平均速度是20 m/s,则从抛出到落回抛出点所需时间为_s,上升的最大高度为_m (g=10m/s2)2 解答竖直上抛的物体,在上升阶段的平均速度20vv,即20220vvm/s=40m/s,从抛出到最高点的时间为:10400gvts=4s,从抛出到落回抛出点所需时间为2t=8s,上升的最大高度为:102402220gvhm=80m,图 2-18 1 2 3 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 15 页,共 23 页 - - - - - - - - - 本题的正确答案为“8 ;80” 。(P29)*7 一物体作自由落体运动,落地时的速度为30m/s,则它下落高度是m,它在前 2s 内的平均速度为m/s,它在最后1s 内下落的高度是_m (g=10m/s2)2 解答自由落体的下落高度为:10230222gvhtm=45m,前 2s 内的平均速度为:2102121212gttgttsvm/s=10m/s,自由下落的总时间为:104522ghts=3s,前 2s 内下落的高度为:222102121tghm=20m,最后 1s内下落的高度是hh( 4520)m=25m。本题的正确答案为“45 ;10 ;25” 。(P29)*8 一小球从楼顶边沿处自由下落,在到达地面前最后一秒内通过的位移是楼高的9/25,求楼高 3 解答如图 2-19 所示,设整个下落过程用时为t,楼高为 h,由题意知hh2592,则有hhhh251621,221gth,2)1(212516tgh,、两式相除后解得t5s ,h125m 。所以楼高为125m 。(P29)*9 长为 5m 的竖直杆下端在一窗沿上方5m 处,让这根杆自由下落,它全部通过窗沿的时间为多少?(g 取 10 m/s2)2 解答设竖直杆上端通过窗沿的时间为t1,下端通过窗沿的时间为t2,则21121gts,图 2-19 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 16 页,共 23 页 - - - - - - - - - 22221gts,其中msms5,1021,代入、两式得:1t2s,t21s, 所以这根杆全部通过窗沿的时间为21ttts) 12(。(P29)*10 一只球自屋檐自由下落,通过窗口所用时间t=0.2s,窗高 2 米,问窗顶距屋檐多少米? (g=10m/s2)2.5 解答设小球自由下落到窗顶的位移为h,所用时间为t,窗高为h,则221gth,2)(21ttghh,其中h2m,t0.2s代入数据,解、两式得h4.05m,故窗顶距屋檐的距离为4.05m。(P30)*13 竖直向上抛出一小球,3s末落回到抛出点,则小球在第2 秒内的位移(不计空气阻力)是()1.5 () 10m () 0 () -5m () -1.25m 解答竖直向上抛出的小球,3s 末落回到抛出点,根据上抛运动的对称性得,上升过程和下降过程历时均为1.5s,第 1 秒末和第 2 秒末位于同一位置,即小球在第2 秒内的位移为 0。本题的正确选项为(B) 。(P30)*14 将一小球以初速度v 从地面竖直上抛后,经4s 小球离地面高度为6m,若要使小球抛出后经2s达相同高度,则初速度v0应( g=10 m/s2,不计阻力)()2 ()小于v()大于v()等于v ()无法确定解答由竖直上抛运动位移公式得:21121gtvth222021gttvh其中 h=6m, t1=4s, t2=2s 代入、式得:v21.5m/s,v0=13m/s,即v0v本题的正确选项为(A) 。(P30)名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 17 页,共 23 页 - - - - - - - - - *15 在绳的上、 下两端各拴着一小球,一人用手拿住绳上端的小球站在三层楼的阳台上,放手后小球自由下落,两小球落地的时间差为t ,如果人站在四层楼的阳台上,放手让其自由下落,两小球落地的时间差将(空气阻力不计)_ (填“增大”、 “减小”、 “不变” ) 1 解答设绳长为0l,下端小球落地后,上端小球下落到着地过程中的平均速度为v,则有vlt0其中0l固定,下落高度越高,v越大,所以站在四层楼的阳台上放手让其自由下落,两小球落地的时间差较小。本题的正确答案为“减小”。(P30)*16 一只球从高处自由下落,下落0.5s 时,一颗子弹从其正上方向下射击,要使球在下落 1.8m 时被击中,则子弹发射的初速度为多大?(g=10 m/s2)4 解答设子弹发射的初速度为v0,球从下落到被击中历时t1,子弹运动时间为t2,有2121gth222021gttvht2=t10.5s,其中 h=1.8m,代入、式得v0=17.5m/s,(P30)*17 一石块A 从 80m 高的地方自由下落,同时在地面正对着这石块,用40 m/s 的速度竖直向上抛出另一石块B,问:(g=10 m/s2)石块 A 相对 B 是什么性质的运动?经多长时间两石块相遇?相遇时离地面有多高?3 解答由于石块A、B 具有相同的加速度,故石块A 相对 B 做速度为40 m/s 的匀速直线运动。由于开始时两石块相距s=80m,因此有:4080相vsts=2s,故经 2s两石块相遇。2s 内石块 A 下落的高度为:222102121gthm=20m,故相遇时离地面的高度为h=(8020)m=60m。名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 18 页,共 23 页 - - - - - - - - - (P30)*18 从地面竖直上抛一物体,它两次经过A 点的时间间隔为tA,两次经过B 点的时间间隔为 tB,则 AB 相距_3 解答根据运动时间的对称性得,物体从最高点自由下落到A 点的时间为2At,物体从最高点自由下落到B 点的时间为2Bt,所以最高点到A点的距离为:2281)2(21AAAgttgh,最高点到 B 点的距离为:2281)2(21BBBgttgh,由、两式得A、B 两点相距为:2281BAttgh,本题的正确答案为“2281BAttg” 。(P30)*19 如图 2-20(原图 2-27)所示, A、B 两棒各长 1m,A 吊于高处,B 竖直置于地面上, A 的下端距地面21m,现让两棒同时开始运动,A 自由下落,B 以 20 m/s 的初速度竖直上抛,若不计空气阻力,求:(g=10 m/s2)两棒的一端开始相遇的高度;两棒的一端相遇到另一端分离所经过的时间5 解答以 A 棒为参照物,B 相对 A 作向上匀速直线运动,相对速度为:20BAvm/s,由题意知, B 棒上端与 A 棒的下端的距离为s1( 211)m=20m,因此从开始运动到两棒的一端开始相遇的时间为:202011BAvsts=1s,t1时间内 A 棒下落的高度为:2211102121gthm=5m,所以两棒的一端开始相遇时,A 棒的下端离地的高度为h=(215)m=16m。从两棒的一端开始相遇到另一端分离,B 相对A 的位移大小为s2=2m,所以两棒的一A B 21m 图 2-20 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 19 页,共 23 页 - - - - - - - - - 端相遇到另一端分离所经过的时间为:ssvstBA1 .020222。(P30)*20 子弹从枪口射出速度大小是30 m/s,某人每隔1s 竖直向上开枪,假定子弹在升降过程中都不相碰,不计空气阻力,试求:空中最多能有几颗子弹?设在 t=0 时,将第一颗子弹射出,在哪些时刻它和以后射出的子弹在空中相遇而过?这些子弹在距射出处多高的地方依次与第一颗子弹相遇?(g=10 m/s2)8 解答一颗子弹从射出到落回地面共用时:1030220gvts=6s,因某人每隔1s 竖直向上开枪,且假定子弹在升降过程中都不相碰,不计空气阻力,故当第一颗子弹刚着地时,第七颗子弹刚发出,空中最多能有6 颗子弹。由题意分析知,当 t3 s 时第一颗子弹到达最高点,这时第二颗子弹离最高点的距离为 5m,速度为10m/s,这以后第二颗子弹相对第一颗子弹以10m/s 的速度匀速运动,到第二颗子弹与第一颗子弹空中相遇还需:105rvs