欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年高中数学第三章基本初等函数31指数与指数函数311实数指数幂及其运算教案新人教B版必修 .pdf

    • 资源ID:27084265       资源大小:736.14KB        全文页数:17页
    • 资源格式: PDF        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年高中数学第三章基本初等函数31指数与指数函数311实数指数幂及其运算教案新人教B版必修 .pdf

    3.1.1 实数指数幂及其运算整体设计教学分析在初中, 学生已了解了整数指数幂的概念和运算性质从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义, 从而把整数指数推广到分数指数,进而推广到有理数指数幂,再推广到无理指数幂,并将幂的运算性质由整数指数幂推广到实数指数幂本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想( 指数幂运算律的推广) 、类比的思想、逼近的思想( 有理数指数幂逼近无理数指数幂)等,同时,充分关注与实际问题的结合,体现数学的应用价值根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持三维目标1通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质2掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质培养学生观察分析、抽象类比的能力3掌握根式与分数指数幂的互化,渗透“转化”的数学思想通过运算训练,养成学生严谨治学、一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理4能熟练地运用实数指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力重点难点教学重点:(1) 分数指数幂和根式概念的理解(2) 掌握并运用分数指数幂的运算性质(3) 运用实数指数幂性质进行化简、求值教学难点:(1) 分数指数幂及根式概念的理解(2) 实数指数幂性质的灵活应用课时安排2 课时教学过程第 1 课时导入新课思路 1. 碳 14 测年法 原来宇宙射线在大气层中能够产生放射性碳14,并与氧结合成二氧化碳后进入所有活组织,先为植物吸收,再为动物吸收,只要植物和动物生存着,它们就会不断地吸收碳14 在机体内保持一定的水平而当有机体死亡后,即会停止吸收碳14,其组织内的碳14 便以约 5 730 年的半衰期开始衰变并消失对于任何含碳物质只要测定剩下的放射性碳14 的含量,便可推断其年代( 半衰期:经过一定的时间,变为原来的一半) 引出本节课题精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 17 页思路2. 同学们,我们在初中学习了整数指数幂及其运算性质,那么整数指数幂是否可以推广呢?答案是肯定的这就是本节的主讲内容,教师板书本节课题推进新课新知探究提出问题(1) 整数指数幂的运算性质是什么?(2) 观察以下式子,并总结出规律:a0,5a105(a2)5a2a105;a8(a4)2a4a82;4a124(a3)4a3a124;2a102(a5)2a5a102.(3) 利用的规律,你能表示下列式子吗?453,375,5a7,nxm,m 、n N,且(4) 你能用方根的意义来解释的式子吗?(5) 你能推广到一般的情形吗?讨论结果: (1) 整数指数幂的运算性质:anaaa a, a01(a0); 00无意义;an1an(a0); amanam n; (am)namn;(an)mamn;(ab)nanbn. 其中 n、m N. (2) a2是 a10的 5 次方根;a4是 a8的 2 次方根;a3是 a12的 4 次方根;a5是 a10的2 次方根实质上5a10a105,a8 a82,4a12a124,2a10a102结果的 a 的指数是2,4,3,5分别写成了105,82,124,102,形式上变了,本质没变根据 4 个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式( 分数指数幂形式) (3) 利用 (2) 的规律,453534,375753,5a7a75,nxmxmn. (4)53的四次方根是534,75的三次方根是753,a7的五次方根是a75,xm的 n 次方根是xmn. 结果表明方根的结果和分数指数幂是相通的(5) 如果 a 0,那么 am的 n 次方根可表示为namamn,即 amnnam(a 0,m ,n N,n1) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共 17 页综上所述,我们得到正数的正分数指数幂的意义,教师板书:规定:正数的正分数指数幂的意义是amnnam(a 0, m ,n N,n1)提出问题负整数指数幂的意义是怎样规定的?你能得出负分数指数幂的意义吗?你认为应怎样规定零的分数指数幂的意义?综合上述,如何规定分数指数幂的意义?分数指数幂的意义中,为什么规定a0,去掉这个规定会产生什么样的后果?既然指数的概念就从整数指数推广到了有理指数,那么整数指数幂的运算性质是否也适用于有理指数幂呢?讨论结果:负整数指数幂的意义是:an1an(a0,n N) 既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义规定:正数的负分数指数幂的意义是amn1amn1nam(a 0,m 、nN,n1) 规定: 零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义教师板书分数指数幂的意义分数指数幂的意义就是:有时我们把正分数指数幂写成根式,即nmanam(a 0,m 、n N) ,正数的正分数指数幂的意义是nmanam(a 0,m 、n N,n 1) ,正数的负分数指数幂的意义是nma1amn1nam(a 0,m 、n N,n1) ,零的正分数次幂等于零,零的负分数指数幂没有意义若没有 a0 这个条件会怎样呢?如31)1(3 1 1,62) 1(621 具有同样意义的两个式子出现了截然不同的结果, 这只说明分数指数幂在底数小于零时是无意义的因此在把根式化成分数指数时,切记要使底数大于零,如无a0 的条件,比如式子3a2|a|23,同时负数开奇次方是有意义的, 负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说, 负分数指数幂在有意义的情况下总表示正数,而不是负数, 负数只是出现在指数上规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理指数有理指数幂的运算性质:对任意的有理数r ,s,均有下面的运算性质:(1)arasar s(a0,r ,s Q ) ,(2)(ar)sars(a0,r ,sQ) ,精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 17 页(3)(a b)rarbr(a 0,b0,r Q) 应用示例思路 1 例 1 求值: (1)328;(2)25;(3)(12)5;(4)43)8116(. 活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8 写成 23,25 写成 52,12写成 21,1681写成 (23)4,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来解: (1); 422)2(8232332332(2);5155)5(251)21(221221(3);322)2()21()5(1515(4).827)32()32()8416(3)43(443点评: 本例主要考查指数幂的运算,要按规定来解在进行指数幂的运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如8233823644. 变式训练求值: 333363. 解: 333363331231331631121316329. 例 2 用分数指数幂的形式表示下列各式的b. (1)b532; (2)b435;(3)b5n3m(m、n N) 活动:学生观察、思考,根据解题的顺序,先化为根式,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结解: (1)b 5325132;(2)b 435453;(3)b 5n3mnm53 (m, nN) 点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先化为根式, 再把根式化为分数指数幂,再由幂的运算性质来运算对于计算的结果,不强求精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 17 页统一用什么形式来表示,没有特别要求, 就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数. 变式训练用分数指数幂的形式表示下列各式中的x. (1)x65;(2)x342;(3)x3 2. 答案: (1)x 615;(2)x 324;(3)x 32思路 2 例 1 计算下列各式:(1)(325125) 425;(2)a2a3a2(a 0) 活动:先由学生观察以上两个式子的特征,然后分析, 化为同底 利用分数指数幂计算,在第 (1) 小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算, 这样就简便多了,第(2) 小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答解: (1)2123324121315)55(25)12525(原式; 55555566121232132 (2)a2a3a2a2a12a23a21223a566a5. 变式训练求下列各式的值:(1)432981;(2)2331.5 612. 活动:学生观察以上几个式子的特征,既有分数指数幂又有根式,应把根式转化为分数指数幂后再由运算法则计算,如果根式中根指数不同,也应化成分数指数幂,对(1) 应由里往外,421344432)3(3981,对 (2) 化为同底的分数指数幂精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 5 页,共 17 页例 2 计算下列各式的值:(1)(a32b2)1(ab3)12(b12)713;(2)1112121aaaaa;(3)(a3b2)3b4a1. 活动: 先由学生观察以上三个式子的特征,然后交流解题的方法,把根式用分数指数幂写出, 利用指数的运算性质去计算,教师引导学生,强化解题步骤,对(1) 先进行积的乘方,再进行同底数幂的乘法,最后再乘方,或先都乘方,再进行同底数幂的乘法,对(2) 把分数指数化为根式,然后通分化简,对(3) 把根式化为分数指数,进行积的乘方,再进行同底数幂的运算变式训练比较5,311,6123的大小活动:学生努力思考,积极交流,教师引导学生解题的思路,由于根指数不同,应化成统一的根指数,才能进行比较,又因为根指数最大的是6,所以我们应化为六次根式,然后,只看被开方数的大小就可以了解:因为56536125,3116121,而 125123121,所以612561236121,所以56123311. 点评:把根指数统一是比较几个根式大小的常用方法. 知能训练1(1) 下列运算中,正确的是( ) Aa2a3a6B( a2)3( a3)2C(a 1)00 D( a2)3 a6(2) 下列各式4( 4)2n,442n1) ,5a4,4a5( 各式的nN,a R) 中,有精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 6 页,共 17 页意义的是 ( ) A B C D (3)(34a6)2(43a6)2等于 ( ) Aa B a2Ca3 D a4(4) 把根式5(a b) 2改写成分数指数幂的形式为( ) A(a b)25 B(a b)52C(a25 b25) D (a52 b52) (5) 化简 (a23b12)( 3a12b13) (13a16b56) 的结果是 ( ) A6a B a C 9a D9a 2计算: (1)0.02713( 17) 22563431(21)0_. (2) 设 5x4,5y2,则 52xy_. 3已知 x y12, xy9 且 xy,求21212121yxyx 的值答案: 1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8 3.因为 xy 12,xy9,所以 (x y)2(x y)24xy14436108427.又因为 xy,所以 xy233 63. 所以原式126 6333. 拓展提升化简活动: 学生观察式子特点,考虑 x 的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到:精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 7 页,共 17 页课堂小结活动: 教师: 本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流同时教师用投影仪显示本堂课的知识要点:(1) 分数指数幂的意义就是:正数的正分数指数幂的意义是nmanam(a 0,m 、nN,n1) ,正数的负分数指数幂的意义是nmnmnmaaa11(a 0, m 、n N,n1) ,零的正分数次幂等于零,零的负分数指数幂没有意义(2) 规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理指数(3) 有理指数幂的运算性质:对任意的有理数r 、s,均有下面的运算性质:arasar s(a0,r 、sQ ) ,(ar)sars(a 0,r 、s Q) ,(ab)r arbr(a 0,b0,r Q) (4) 说明两点:分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系整数指数幂的运算性质对任意的有理指数幂也同样适用因而分数指数幂与根式可以互化,也可以利用mnmnnmnaaa )(来计算作业课本本节练习B 2、3. 设计感想本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练, 巩固知识, 要辅助以信息技术的手段来完成大容量的课堂教学任务备课资料 备选例题 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 8 页,共 17 页例 1 已知32121aa,探究下列各式的值的求法点评: 对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值例 2 已知 a0,对于 0r 8,r N,式子 (a)8r(14a)r能化为关于a 的整数指数幂的情形有几种?活动: 学生审题,考虑与本节知识的联系,教师引导解题思路,把根式转化为分数指数幂后再由运算法则计算,即先把根式转化为分数指数幂,再进行幂的乘方,化为关于a的指数幂的情形,再讨论,及时评价学生的作法163r 能被 4 整除才行,因此r 0,4,8时上式为关于a 的整数指数幂点评: 本题中确定整数的指数幂时,可由范围的从小到大依次验证,决定取舍利用分数指数幂进行根式运算时,结果可以化为根式形式或保留分数指数幂的形式( 设计者:郝云静) 第 2 课时导入新课思路1. 同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数( 有理数 ) ,有理数到实数并且知道,在有理数到实数的扩充过程中,增添的数是无理数对无理指数幂,也是这样扩充而来既然如此,我们这节课的主要内容是:教师板书本堂课的课题无理指数幂思路2. 同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此, 我们必须把指数幂从有理指数幂扩充到实数指数幂,因此我们本节课学习:无理指数幂精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 9 页,共 17 页推进新课新知探究提出问题我们知道21.414 213 56 ,那么1.41,1.414,1.414 2,1.414 21,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,是2的什么近似值?多媒体显示以下图表:同学们从下面的两个表中,能发现什么样的规律?2的过剩近似值52的近似值1.5 11.180 339 89 1.42 9.829 635 328 1.415 9.750 851 808 1.414 3 9.739 872 62 1.414 22 9.738 618 643 1.414 214 9.738 524 602 1.414 213 6 9.738 518 332 1.414 213 57 9.738 517 862 1.414 213 563 9.738 517 752 52的近似值2的不足近似值9.518 269 694 1.4 9.672 669 973 1.41 9.735 171 039 1.414 9.738 305 174 1.414 2 9.738 461 907 1.414 21 9.738 508 928 1.414 213 9.738 516 765 1.414 213 5 9.738 517 705 1.414 213 56 9.738 517 736 1.414 213 562 你能给上述思想起个名字吗?一个正数的无理数次幂到底是一个什么性质的数呢?如52,根据你学过的知识,能作出判断并合理地解释吗?借助上面的结论你能说出一般性的结论吗?活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:问题: 从近似值的分类来考虑,一方面从大于2的方向, 另一方面从小于2的方向问题:对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联问题:上述方法实际上是无限接近,最后是逼近问题:对问题给予大胆猜测,从数轴的观点加以解释精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 10 页,共 17 页问题:在的基础上,推广到一般的情形,即由特殊到一般讨论结果: 1.41,1.414,1.414 2,1.414 21,这些数都小于2,称2的不足近似值,而1.42,1.415,1.414 3,1.414 22,这些数都大于2,称2的过剩近似值第一个表:从大于2的方向逼近2时,52就从 51.5,51.42,51.415,51.414 3,51.414 22,即大于 52的方向逼近52. 第二个表:从小于2的方向逼近2时, 52就从 51.4,51.41,51.414,51.414 2,51.414 21,即小于52的方向逼近52. 从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面52从51.4,51.41,51.414,51.414 2,51.414 21,即小于52的方向接近 52,而另一方面52从51.5,51.42,51.415,51.414 3,51.414 22,即大于52的方向接近52,可以说从两个方向无限地接近52,即逼近52,所以52是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,和另一串有理数指数幂51.5,51.42,51.415,51.414 3,51.414 22,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示52的点靠近,但这个点一定在数轴上,由此我们可得到的结论是52一定是一个实数, 即 51.451.41 51.41451.414 251.414 21 52 51.414 2251.414 351.41551.4251.5. 充分表明 52是一个实数,再如(12)3, 3 等都是实数逼近思想,事实上里面含有极限的思想,这是以后要学的知识根据我们可以推断52是一个实数,猜测一个正数的无理数次幂是一个实数无理指数幂的意义:一般地,无理指数幂a(a 0, 是无理数 ) 是一个确定的实数也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数我们规定了无理指数幂的意义,知道它是一个确定的实数,结合前面的有理指数幂,那么,指数幂就从有理指数幂扩充到实数指数幂提出问题为什么在规定无理指数幂的意义时,必须规定底数是正数?无理指数幂的运算法则是怎样的?是否与有理指数幂的运算法则相通呢?你能给出实数指数幂的运算法则吗?活动:教师组织学生互助合作,交流探讨, 引导他们用反例说明问题,注意类比, 归纳对问题 (1) 回顾我们学习分数指数幂的意义时对底数的规定,举例说明对问题 (2) 结合有理指数幂的运算法则,既然无理指数幂a(a 0, 是无理数 )是一个确定的实数,那么无理指数幂的运算法则应当与有理指数幂的运算法则类似,并且相通对问题 (3) 有了有理指数幂的运算法则和无理指数幂的运算法则,实数的运算法则自然就得到了讨论结果: (1) 底数大于零的必要性,若 a 1,那么 a是 1 还是 1 就无法确定了,这样就造成混乱,规定了底数是正数后,无理指数幂a是一个确定的实数,就不会再造成混乱(2) 因为无理指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理指数幂的运算性质,同样也适用于无理指数幂类比有理指数幂的运算性质可以得到无理指数幂的运算法则:arasar s(a0, r ,s 都是无理数 ) (ar)sars(a 0,r ,s 都是无理数 ) 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 11 页,共 17 页(ab)r arbr(a 0,b0,r 是无理数 ) (3) 指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质:arasar s(a0, r ,s R) (ar)sars(a 0,r ,s R) (ab)r arbr(a 0,b0,r R) 应用示例思路 1 例 1 利用科学计算器计算( 精确到 0.001) :021.52;3.142;321. 3;52. 解:所以 0.21.520.087,3.1420.101, 321 .3 2.126,529.739.点评:不同的计算器,按键的功能和位置不一定相同. 变式训练利用科学计算器计算函数值已知 f(x)2.72x,求 f( 3) ,f( 2) , f( 1),f(1) ,f(2) ,f(3)(精确到 0.001) 解:就可分别得到:0.135164359,0.367647059,2.72,7.3984,20.123648. 所以 f( 2)0.135, f( 1)0.368,f(1) 2.72,f( 2)7.398,f(3) 20.124.精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 12 页,共 17 页2 化简下列各式:点评:注意运算性质的应用. 变式训练化简 ( 式中字母均为正实数) :(1)3x2(2x2yz) ;(2)(x1y)(4y ) 活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)(2)由里向外,要紧扣分数指数幂的意义和运算性质,并对学生作及时的评价,注意总结解题的方法和规律解: (1)3x2(2x2yz) (32)x22yz6yz;(2)(x1y)(4y) 4x1yy4xy4x. 思路 2 例计算:活动:学生观察、思考,根式化成分数指数,利用幂的运算性质解题,另外要注意整体的意识, 教师有针对性地提示引导,对(1) 根式的运算常常化成幂的运算进行,对(2) 充分利用指数幂的运算法则来进行,对(3) 则要根据单项式乘法和幂的运算法则进行,对 (4) 要利用平方差公式先因式分解,并对学生作及时的评价精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 13 页,共 17 页点评:在指数运算中,一定要注意运算顺序和灵活运用乘法公式. 变式训练化简下列各式:(2)(a3a3)(a3a3) (a4a41)(a a1) 活动:学生观察式子的特点,特别是指数的特点,教师引导学生考虑题目的思路,这两题要注意分解因式,特别是立方和和立方差公式的应用,对有困难的学生及时提示:对(1) 考查 x2与 x23的关系可知x2(x23)3,立方关系就出来了,公式便可运用, 对(2) 先利用平方差,再利用幂的乘方转化为立方差,再分解因式,组织学生讨论交流知能训练精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 14 页,共 17 页解析: 根据本题的特点,注意到它的整体性,特别是指数的规律性,我们可以进行适当的变形因为 (12132)(1 2132) 12116,所以原式的分子、分母同乘(1 2132) ,依次类推,所以 212212121321211213212(1 2132)1. 答案: A 3计算a2a 1a2a1(a1)解:原式a12a12a11|a11|(a 1)本题可以继续向下做,去掉绝对值,作为思考留作课下练习4设 a0,x12(nnaa11) ,则 (x 1x2)n的值为 _答案: a 拓展提升已知 103,104,求 10,10 ,102,510. 活动:学生思考,观察题目的特点,从整体上看,应利用运算性质,然后再求值,要有预见性,教师引导学生考虑问题的思路,必要时给予提示解: 10 101034 12;精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 15 页,共 17 页10101034;102(10)23219;510(10)15415. 点评:运用整体思想和运算法则是解决本题的关键,要深刻理解这种做法课堂小结(1) 无理指数幂的意义一般地,无理指数幂a(a 0, 是无理数 ) 是一个确定的实数(2) 实数指数幂的运算性质:对任意的实数r,s,均有下面的运算性质:arasar s(a0, r ,s R) (ar)sars(a 0,r ,s R) (ab)r arbr(a 0,b0,r R) (3) 逼近的思想,体会无限接近的含义作业课本习题 31 A 1. 设计感想无理指数是指数概念的又一次扩充,教学中要让学生通过多媒体的演示,理解无理指数幂的意义, 教学中也可以让学生自己通过实际情况去探索,自己得出结论, 加深对概念的理解,本堂课内容较为抽象,又不能进行推理,只能通过多媒体的教学手段,让学生体会,特别是逼近的思想、类比的思想,多做练习,提高学生理解问题、分析问题的能力备课资料参照我们说明无理指数幂的意义的过程,请你说明无理指数幂23的意义活动:教师引导学生回顾无理指数幂52的意义的过程,利用计算器计算出3的近似值, 取它的过剩近似值和不足近似值,根据这些近似值计算23的过剩近似值和不足近似值,利用逼近思想,“逼出”23的意义,学生合作交流,在投影仪上展示自己的探究结果解:31.732 050 80 ,取它的过剩近似值和不足近似值如下表3的过剩近似值23的过剩近似值3的不足近似值23的不足近似值1.8 3.482 202 253 1.7 3.249 009 585 1.74 3.340 351 678 1.73 3.317 278 183 1.733 3.324 183 446 1.731 3.319 578 342 1.732 1 3.322 110 36 1.731 9 3.321 649 849 1.732 06 3.322 018 252 1.732 04 3.321 972 2 1.732 051 3.321 997 529 1.732 049 3.321 992 923 1.732 050 9 3.321 997 298 1.732 050 7 3.321 996 838 1.732 050 81 3.321 997 091 1.732 050 79 3.321 997 045 精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 16 页,共 17 页我们把用 2 作底数,3的不足近似值作指数的各个幂排成从小到大的一列数217,21.73,21.731,21.731 9,同样把用 2 作底数,3的过剩近似值作指数的各个幂排成从大到小的一列数:218,21.74,21.733,21.732 1,不难看出3的过剩近似值和不足近似值相同的位数越多,即3的近似值精确度越高,以其过剩近似值和不足近似值为指数的幂2会越来越趋近于同一个数,我们把这个数记为23,即 21.721.73 21.73121.731 9 23 21.732 1 21.73321.7421.8.也就是说23是一个实数,233.321 997 也可以这样解释:当3的过剩近似值从大于3的方向逼近3时, 23的近似值从大于23的方向逼近23;当3的不足近似值从小于3的方向逼近3时, 23的近似值从小于23的方向逼近23. 所 以23就 是 一 串 有 理 指 数 幂21.7,21.73,21.731,21.731 9, 和 另 一 串 有 理 指 数 幂21.8,21.74,21.733,21.732 1,按上述规律变化的结果,即233.321 997.精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 17 页,共 17 页

    注意事项

    本文(2022年高中数学第三章基本初等函数31指数与指数函数311实数指数幂及其运算教案新人教B版必修 .pdf)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开