14柱坐标系与球坐标系.ppt
2022年年7月月22日星期五日星期五 设设P P是空间任意一点,是空间任意一点,在在oxy平面的射影为平面的射影为Q, 用用(,)(0,(,)(0,002)2)表示点表示点Q在平面在平面oxyoxy上的极坐标,上的极坐标, 点点P P的位置可用有的位置可用有序数组序数组(,z)(,z)表示表示. .xyzoP(,Z)Q 把建立上述对应关系的坐标系叫做把建立上述对应关系的坐标系叫做柱柱坐标系坐标系. . 有序数组有序数组(,Z)(,Z)叫点叫点P P的的柱柱坐标,坐标,记作记作(,Z). (,Z). 其中其中0, 00, 0 2, -2, -Z Z+ 柱坐标系又称半极坐标系,它是由柱坐标系又称半极坐标系,它是由平面极坐标系及空间直角坐标系中的平面极坐标系及空间直角坐标系中的一部分建立起来的一部分建立起来的. . 空间点空间点P P的直角坐标的直角坐标(x, y, z)(x, y, z)与柱坐与柱坐标标 (,Z) (,Z) 之间的变换公式为之间的变换公式为 zzyx sincos 设点的直角坐标为设点的直角坐标为(1,1,1),求它,求它在柱坐标系中的坐标在柱坐标系中的坐标.z1sin1cos12解得解得= ,= 424点点在柱坐标系中的坐标为在柱坐标系中的坐标为 ( , ,1). 注:注:求求时要注意角的终边与点的时要注意角的终边与点的射影所在位置一致射影所在位置一致xyzoPQr设设P是空间任意一点,是空间任意一点,连接连接OP,记记| OP |=r,OP与与OZ轴正向所轴正向所夹的角为夹的角为.在在oxy平面的射影为平面的射影为Q, 设设P在在oxy平面上的射影为平面上的射影为Q, Ox轴按逆时轴按逆时针方向旋转到针方向旋转到OQ时所转过的最小正角时所转过的最小正角为为. 这样点这样点 P 的位置就可以用有序数的位置就可以用有序数组组(r,)表示表示.(r,) 我们把建立上述我们把建立上述对应关系的坐标系对应关系的坐标系叫做叫做球坐标系球坐标系 (或或空间极坐标系空间极坐标系) .有序数组有序数组(r,)叫做点叫做点P的球坐标,的球坐标,其中其中20,0, 0rxyzoP(r,)Qr 空间的点与有序数组空间的点与有序数组(r,)之间建立了一种之间建立了一种对应关系对应关系. 空间点空间点P的直角坐标的直角坐标(x, y, z)与球坐标与球坐标(r,)之间的变换关系为之间的变换关系为cossinsincossinrzryrxxyzoP(r,)Qr 设点的球坐标为设点的球坐标为(2, , ),求,求它的直角坐标它的直角坐标.4343222(243cos212222243sin43sin212222243cos43sin2)(zyx 2点点在直角坐标系中的坐标为在直角坐标系中的坐标为 ( 1 ,1 ,),).P(x,y,z)xyzxyzoP(,Z)QxyzoP(r,)Qr数轴数轴平面直角坐标系平面直角坐标系平面极坐标系平面极坐标系空间直角坐标系空间直角坐标系球坐标系球坐标系柱坐标系柱坐标系 坐标系是联系形与数的桥梁,利用坐标系是联系形与数的桥梁,利用坐标系可以实现几何问题与代数问题坐标系可以实现几何问题与代数问题的相互转化,从而产生了坐标法的相互转化,从而产生了坐标法.坐标系坐标系小结小结