线性代数+高数基础知识框架(共48页).doc
精选优质文档-倾情为你奉上专心-专注-专业线性代数知识框架 注:全体维实向量构成的集合叫做维向量空间.注: 关于:称为的标准基,中的自然基,单位坐标向量;线性无关;任意一个维向量都可以用线性表示.行列式的定义 行列式的计算:行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘积之和.推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零.若都是方阵(不必同阶),则上三角、下三角、主对角行列式等于主对角线上元素的乘积.关于副对角线:范德蒙德行列式:矩阵的定义 由个数排成的行列的表称为矩阵.记作:或伴随矩阵 ,为中各个元素的代数余子式. 逆矩阵的求法: 注: 方阵的幂的性质: 设的列向量为,的列向量为,则 ,为的解可由线性表示. 同理:的行向量能由的行向量线性表示,为系数矩阵. 用对角矩阵左乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的行向量;用对角矩阵右乘一个矩阵,相当于用的对角线上的各元素依次乘此矩阵的列向量. 两个同阶对角矩阵相乘只用把对角线上的对应元素相乘. 分块矩阵的转置矩阵:分块矩阵的逆矩阵: 分块对角阵相乘:分块对角阵的伴随矩阵: 矩阵方程的解法():设法化成 与同解(列向量个数相同),则: 它们的极大无关组相对应,从而秩相等; 它们对应的部分组有一样的线性相关性; 它们有相同的内在线性关系. 矩阵与的行向量组等价齐次方程组与同解(左乘可逆矩阵); 矩阵与的列向量组等价(右乘可逆矩阵). 判断是的基础解系的条件: 线性无关; 都是的解; . 一个齐次线性方程组的基础解系不唯一. 零向量是任何向量的线性组合,零向量与任何同维实向量正交. 单个零向量线性相关;单个非零向量线性无关. 部分相关,整体必相关;整体无关,部分必无关. 原向量组无关,接长向量组无关;接长向量组相关,原向量组相关. 两个向量线性相关对应元素成比例;两两正交的非零向量组线性无关. 向量组中任一向量都是此向量组的线性组合. 向量组线性相关向量组中至少有一个向量可由其余个向量线性表示.向量组线性无关向量组中每一个向量都不能由其余个向量线性表示. 维列向量组线性相关; 维列向量组线性无关. . 若线性无关,而线性相关,则可由线性表示,且表示法唯一. 矩阵的行向量组的秩列向量组的秩矩阵的秩. 行阶梯形矩阵的秩等于它的非零行的个数.行阶梯形矩阵 可画出一条阶梯线,线的下方全为;每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线后面的第一个元素非零.当非零行的第一个非零元为1,且这些非零元所在列的其他元素都是时,称为行最简形矩阵 矩阵的行初等变换不改变矩阵的秩,且不改变列向量间的线性关系; 矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系. 即:矩阵的初等变换不改变矩阵的秩. 矩阵的初等变换和初等矩阵的关系:对施行一次初等行变换得到的矩阵,等于用相应的初等矩阵左乘;对施行一次初等列变换得到的矩阵,等于用相应的初等矩阵右乘.矩阵的秩 如果矩阵存在不为零的阶子式,且任意阶子式均为零,则称矩阵的秩为.记作向量组的秩 向量组的极大无关组所含向量的个数,称为这个向量组的秩.记作 矩阵等价 经过有限次初等变换化为. 记作:向量组等价 和可以相互线性表示. 记作: 矩阵与等价,可逆作为向量组等价,即:秩相等的向量组不一定等价.矩阵与作为向量组等价矩阵与等价. 向量组可由向量组线性表示有解. 向量组可由向量组线性表示,且,则线性相关.向量组线性无关,且可由线性表示,则. 向量组可由向量组线性表示,且,则两向量组等价; 任一向量组和它的极大无关组等价.向量组的任意两个极大无关组等价. 向量组的极大无关组不唯一,但极大无关组所含向量个数唯一确定. 若两个线性无关的向量组等价,则它们包含的向量个数相等. 若是矩阵,则,若,的行向量线性无关; 若,的列向量线性无关,即:线性无关. 矩阵的秩的性质: 若且在矩阵乘法中有左消去律;若 且在矩阵乘法中有右消去律. 初等矩阵的性质:注:线性方程组的矩阵式 向量式 矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:(无条件恒成立)线性方程组解的性质: 设为矩阵,若,一定有解, 当时,一定不是唯一解,则该向量组线性相关. 是的上限.标准正交基 个维线性无关的向量,两两正交,每个向量长度为1. .是单位向量 . 内积的性质: 正定性: 对称性: 双线性: 的特征矩阵 .的特征多项式 . 是矩阵的特征多项式的特征方程 . ,称为矩阵的迹. 上三角阵、下三角阵、对角阵的特征值就是主对角线上的各元素. 若,则为的特征值,且的基础解系即为属于的线性无关的特征向量. 一定可分解为=、,从而的特征值为:, . 若的全部特征值,是多项式,则: 的全部特征值为; 若满足,则的任何一个特征值必满足. 设,对阶矩阵规定:为的一个多项式. 的特征向量不一定是的特征向量. 与有相同的特征值,但特征向量不一定相同.与相似 (为可逆矩阵) 记为:与正交相似 (为正交矩阵)可以相似对角化 与对角阵相似. 记为: (称是的相似标准形) 可相似对角化 为的重数恰有个线性无关的特征向量. 这时,为的特征向量拼成的矩阵,为对角阵,主对角线上的元素为的特征值.设为对应于的线性无关的特征向量,则有:. 注:当为的特征值时,可相似对角化的重数 基础解系的个数. 若可相似对角化,则其非零特征值的个数(重数重复计算). 若阶矩阵有个互异的特征值,则可相似对角化. 若=, 相似矩阵的性质: 从而同时可逆或不可逆 ; (若均可逆); (为整数);,,从而有相同的特征值,但特征向量不一定相同.注:是关于的特征向量,是关于的特征向量. 数量矩阵只与自己相似. 对称矩阵的性质: 特征值全是实数,特征向量是实向量; 不同特征值对应的特征向量必定正交; 注:对于普通方阵,不同特征值对应的特征向量线性无关; 必可用正交矩阵相似对角化,即:任一实二次型可经正交变换化为标准形; 与对角矩阵合同,即:任一实二次型可经可逆线性变换化为标准形; 一定有个线性无关的特征向量,可能有重的特征值,该特征值的重数=).正交矩阵 为正交矩阵的个行(列)向量构成的一组标准正交基. 正交矩阵的性质: ; ; 正交阵的行列式等于1或-1; 是正交阵,则,也是正交阵; 两个正交阵之积仍是正交阵; 的行(列)向量都是单位正交向量组.二次型 ,即为对称矩阵,与合同 . 记作: ()正惯性指数 二次型的规范形中正项项数;负惯性指数二次型的规范形中负项项数;符号差 . (为二次型的秩) 两个矩阵合同的充分必要条件是:它们有相同的正负惯性指数. 两个矩阵合同的充分条件是: 两个矩阵合同的必要条件是: 经过化为标准形. 二次型的标准形不是唯一的,与所作的正交变换有关,但非零系数的个数是由 唯一确定的. 当标准形中的系数为-1或0或1时,为规范形 . 实对称矩阵的正(负)惯性指数等于它的正(负)特征值的个数. 惯性定理:任一实对称矩阵与唯一对角阵合同. 用正交变换法化二次型为标准形: 求出的特征值、特征向量; 对个特征向量正交化、单位化; 构造(正交矩阵),作变换,则新的二次型为,的主对角上的元素即为的特征值.施密特正交规范化 线性无关, 单位化: 技巧:取正交的基础解系,跳过施密特正交化。例如:取,.正定二次型 不全为零,.正定矩阵 正定二次型对应的矩阵. 为正定二次型(之一成立): ,; 的正惯性指数为; 的特征值全大于; 的所有顺序主子式全大于; 与合同,即存在可逆矩阵使得; 存在正交矩阵,使得 (大于). 存在可逆矩阵,使得; 合同变换不改变二次型的正定性. 为正定矩阵的必要条件: ; . 若为正定矩阵也是正定矩阵. 若为正定矩阵为正定矩阵,但不一定为正定矩阵.【完】