欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2020版导与练一轮复习文科数学习题:第十三篇 导数及其应用(选修1-1) 第11节 导数在研究函数中的应用第四课时 导数与函数零点 .doc

    • 资源ID:2711595       资源大小:284.50KB        全文页数:9页
    • 资源格式: DOC        下载积分:5金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2020版导与练一轮复习文科数学习题:第十三篇 导数及其应用(选修1-1) 第11节 导数在研究函数中的应用第四课时 导数与函数零点 .doc

    www.ks5u.com第四课时导数与函数零点【选题明细表】知识点、方法题号利用导数研究函数零点个数2,5根据函数零点求参数3,4函数零点的综合应用1,6,7基础巩固(时间:30分钟)1.(2018河北邢台第二次月考)已知f(x)=ex-ax2.命题p:a1,y=f(x)有三个零点;命题q:aR,f(x)0恒成立.则下列命题为真命题的是(B)(A)pq (B)(p)(q)(C)(p)q (D)p(q)解析:对于命题p:当a=1时,f(x)=ex-x2,在同一坐标系中作出y=ex,y=x2的图象(图略),由图可知y=ex与y=x2的图象有1个交点,所以f(x)=ex-x2有1个零点,故命题p为假命题,因为f(0)=1,所以命题q显然为假命题.故(p)(q)为真.2.(2018贵阳联考)已知函数f(x)的定义域为-1,4,部分对应值如表:x-10234f(x)12020f(x)的导函数y=f(x)的图象如图所示.当1<a<2时,函数y=f(x)-a的零点的个数为(D)(A)1(B)2(C)3(D)4解析:根据导函数图象,知2是函数的极小值点,函数y=f(x)的大致图象如图所示.由于f(0)=f(3)=2,1<a<2,所以y=f(x)-a的零点个数为4.3.若函数f(x)=+1(a<0)没有零点,则实数a的取值范围为.解析:f(x)=(a<0).当x<2时,f(x)<0;当x>2时,f(x)>0,所以当x=2时,f(x)有极小值f(2)=+1,若使函数f(x)没有零点,当且仅当f(2)=+1>0,解之得a>-e2,因此-e2<a<0.答案:(-e2,0)4.(2018河北武邑中学第二次调研)已知函数f(x)=x3-x2-ax-2的图象过点A(4,).(1)求函数f(x)的单调增区间;(2)若函数g(x)=f(x)-2m+3有3个零点,求m的取值范围.解:(1)因为函数f(x)=x3-x2-ax-2的图象过点A(4,),所以-4a-4a-2=,解得a=2,即f(x)=x3-x2-2x-2,所以f(x)=x2-x-2.由f(x)>0,得x<-1或x>2.所以函数f(x)的单调增区间是(-,-1),(2,+).(2)由(1)知f(x)极大值=f(-1)=-+2-2=-,f(x)极小值=f(2)=-2-4-2=-,由数形结合,可知要使函数g(x)=f(x)-2m+3有三个零点,则-<2m-3<-,解得-<m<.所以m的取值范围为(-,).能力提升(时间:15分钟)5.已知函数f(x)=ex-1,g(x)=+x,其中e是自然对数的底数,e=2.718 28.(1)证明:函数h(x)=f(x)-g(x)在区间(1,2)上有零点;(2)求方程f(x)=g(x)的根的个数,并说明理由.(1)证明:由题意可得h(x)=f(x)-g(x)=ex-1-x.所以h(1)=e-3<0,h(2)=e2-3->0,所以h(1)h(2)<0,所以函数h(x)在区间(1,2)上有零点.(2)解:由(1)可知h(x)=f(x)-g(x)=ex-1-x.由g(x)=+x知x0,+),而h(0)=0,则x=0为h(x)的一个零点.又h(x)在(1,2)内有零点,因此h(x)在0,+)上至少有两个零点.h(x)=ex-1,记(x)=ex-1,则(x)=ex+.当x(0,+)时,(x)>0,因此(x)在(0,+)上单调递增,易知(x)在(0,+)内只有一个零点,则h(x)在0,+)上有且只有两个零点,所以方程f(x)=g(x)的根的个数为2.6.已知函数f(x)=ex+ax-a(aR且a0).(1)若f(0)=2,求实数a的值,并求此时f(x)在-2,1上的最小值;(2)若函数f(x)不存在零点,求实数a的取值范围.解:(1)由f(0)=1-a=2,得a=-1.易知f(x)在-2,0上单调递减,在0,1上单调递增,所以当x=0时,f(x)在-2,1上取得最小值2.(2)f(x)=ex+a,由于ex>0.当a>0时,f(x)>0,f(x)是增函数,当x>1时,f(x)=ex+a(x-1)>0.当x<0时,取x=-,则f(-)<1+a(-1)=-a<0.所以函数f(x)存在零点,不满足题意.当a<0时,f(x)=ex+a,令f(x)=0,得x=ln(-a),在(-,ln(-a)上,f(x)<0,f(x)单调递减,在(ln(-a),+)上,f(x)>0,f(x)单调递增,所以当x=ln(-a)时,f(x)取得最小值.函数f(x)不存在零点,等价于f(ln(-a)=eln(-a)+aln(-a)-a=-2a+aln(-a)>0,解得-e2<a<0.综上所述,所求实数a的取值范围是(-e2,0).7.已知函数f(x)=ax+ln x,其中a为常数.(1)当a=-1时,求f(x)的单调递增区间;(2)当0<-<e时,若f(x)在区间(0,e)上的最大值为-3,求a的值;(3)当a=-1时,试推断方程|f(x)|=+是否有实数根.解:(1)由已知可知函数f(x)的定义域为x|x>0,当a=-1时,f(x)=-x+ln x(x>0),f(x)=(x>0);当0<x<1时,f(x)>0;当x>1时,f(x)<0.所以f(x)的单调递增区间为(0,1).(2)因为f(x)=a+(x>0),令f(x)=0,解得x=-;由f(x)>0,解得0<x<-;由f(x)<0,解得-<x<e.从而f(x)的单调递增区间为(0,-),递减区间为(-,e),所以f(x)max=f(-)=-1+ln(-)=-3,解得a=-e2.(3)由(1)知当a=-1时,f(x)max=f(1)=-1,所以|f(x)|1.令g(x)=+,则g(x)=.当0<x<e时,g(x)>0;当x>e时,g(x)<0.从而g(x)在(0,e)上单调递增,在(e,+)上单调递减.所以g(x)max=g(e)=+<1,所以|f(x)|>g(x),即|f(x)|>+,所以,方程|f(x)|=+没有实数根.

    注意事项

    本文(2020版导与练一轮复习文科数学习题:第十三篇 导数及其应用(选修1-1) 第11节 导数在研究函数中的应用第四课时 导数与函数零点 .doc)为本站会员(荣***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开