欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    曾量子力学题库(网用).doc

    • 资源ID:27122110       资源大小:1.30MB        全文页数:61页
    • 资源格式: DOC        下载积分:15金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要15金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    曾量子力学题库(网用).doc

    Four short words sum up what has lifted most successful individuals above the crowd: a little bit more.-author-date曾量子力学题库(网用)一、曾谨言量子力学题库一简述题:1. (1)试述Wien公式、Rayleigh-Jeans公式和Planck公式在解释黑体辐射能量密度随频率分布的问题上的差别2. (1)试给出原子的特征长度的数量级(以m为单位)及可见光的波长范围(以Å为单位)3. (1)试用Einstein光量子假说解释光电效应 4. (1)试简述Bohr的量子理论5. (1)简述波尔-索末菲的量子化条件6. (1)试述de Broglie物质波假设7. (2)写出态的叠加原理8. (2)一个体系的状态可以用不同的几率分布函数来表示吗?试举例说明。9. (2)按照波函数的统计解释,试给出波函数应满足的条件10.(2)已知粒子波函数在球坐标中为,写出粒子在球壳中被测到的几率以及在方向的立体角元中找到粒子的几率。11.(2)什么是定态?它有哪些特征?12.(2)是否定态?为什么?13.(2)设,试写成其几率密度和几率流密度14.(2)试解释为何微观粒子的状态可以用归一化的波函数完全描述。15.(3)简述和解释隧道效应16.(3)说明一维方势阱体系中束缚态与共振态之间的联系与区别。17.(4)试述量子力学中力学量与力学量算符之间的关系18.(4)简述力学量算符的性质19.(4)试述力学量完全集的概念20.(4)试讨论:若两个厄米算符对易,是否在所有态下它们都同时具有确定值?21.(4)若算符、均与算符对易,即,、是否可同时取得确定值?为什么?并举例说明。22.(4)对于力学量A与B,写出二者在任何量子态下的涨落所满足的关系,并说明物理意义。 23.(4)微观粒子方向的动量和方向的角动量是否为可同时有确定值的力学量?为什么?24.(4)试写出态和力学量的表象变换的表达式25.(4)简述幺正变换的性质26.(4)在坐标表象中,给出坐标算符和动量算符的矩阵表示27.(4)粒子处在的一维谐振子势场中,试写出其坐标表象和动量表象的定态Schrödinger方程。28.(4)使用狄拉克符号导出不含时间的薛定谔方程在动量表象中的形式。29.(4)如果均为厄米算符,下列算符是否也为厄米算符?a) b) b) 30.(5)试述守恒量完全集的概念31.(5)全同粒子有何特点?对波函数有什么要求?32.(5)试述守恒量的概念及其性质33.(5)自由粒子的动量和能量是否为守恒量?为什么?34.(5)电子在均匀电场中运动,哈密顿量为。试判断各量中哪些是守恒量,并给出理由。35.(5)自由粒子的动量和能量是否为守恒量?为什么?36.(6)中心力场中粒子处于定态,试讨论轨道角动量是否有确定值37.(6)写出中心力场中的粒子的所有守恒量38.(6)试给出氢原子的能级简并度并与一般中心力场中运动粒子的能级简并度进行比较39.(6)二维、三维各向同性谐振子及一维谐振子的能级结构有何异同,并给出二维、三维各向同性谐振子能级简并度。40.(6) 氢原子体系处于状态 ,给出和可能取值及取值几率,并说明该状态是否是定态?为什么?41(6)已知中心力场中运动的粒子哈密顿表示为,试列举出几种该量子体系力学量完全集的选取方案。42.(7)什么是正常Zeeman效应?写成与其相应的哈密顿量,并指出系统的守恒量有哪些。43.(8)试给出电子具有自旋的实验依据44.(8)写出表象中、和的本征值与本征态矢45.(8)试述旋量波函数的概念及物理意义46.(8)以和分别表示自旋向上和自旋向下的归一化波函数,写出两电子体系的自旋单态和自旋三重态波函数(只写自旋部分波函数)。47.(8)若|>和|>是氢原子的定态矢(电子和质子的相互作用为库仑作用,并计及电子的自旋轨道耦合项),试给出|>和|>态的守恒量完全集48.(10)若在表象中,与的矩阵分别为,是否可以将看作微扰,从而利用微扰理论求解的本征值与本征态?为什么?49.(11)利用Einstein自发辐射理论说明自发辐射存在的必然性。50.(11)是否能用可见光产生 1阿秒(s) 的激光短脉冲,利用能量时间测不准关系说明原因。51.(11)试给出跃迁的Fermi 黄金规则(golden rule)公式,并说明式中各个因子的含义。52. (8)在质心坐标系中,设入射粒子的散射振幅为,写出靶粒子的散射振幅,并分别写出全同玻色子碰撞和无极化全同费米子碰撞的微分散射截面表达式。二、判断正误题(请说明理由)1. (2)由波函数可以确定微观粒子的轨道2. (2)波函数本身是连续的,由它推求的体系力学量也是连续的3. (2)平面波表示具有确定能量的自由粒子,故可用来描述真实粒子4. (2)因为波包随着时间的推移要在空间扩散,故真实粒子不能用波包描述5. (2)正是由于微观粒子的波粒二象性才导致了测不准关系6. (2)测不准关系式是判别经典力学是否适用的标准7. (2)设一体系的哈密顿与时间无关,则体系一定处于定态8. (2)不同定态的线性叠加还是定态9. (3)对阶梯型方位势,定态波函数连续,则其导数必然连续10.(3)显含时间t,则体系不可能处于定态,不显含时间t,则体系一定处于定态11.(3)一维束缚态能级必定数非简并的12.(3)一维粒子处于势阱中,则至少有一条束缚态13.(3)粒子在一维无限深势阱中运动,其动量一定是守恒量14.(3)量子力学中,静止的波是不存在的15.(3)势阱不存在束缚态16.(4)自由粒子的能量本征态可取为,它也是的本征态17.(4)若两个算符有共同本征态,则它们彼此对易18.(4)在量子力学中,一切可观测量都是厄米算符19.(4)如果是厄米算符,其积不一定是厄米算符20.(4)能量的本征态的叠加态仍然是能量的本征态21.(4)若对易,则在任意态中可同时确定22.(4)若不对易,则在任何情况下不可同时确定23.(4)和不可同时确定24.(4)若对易,则的本征函数必是的本征函数25.(4)对应一个本征值有几个本征函数就是几重简并26.(4)若两个三个,则它们不可能同时有确定值27.(4)测不准关系只适用于不对易的物理量28.(4)根据测不准原理,任一微观粒子的动量都不能精确测定,只能求其平均值29.(4)力学量的平均值一定是实数30.(5)体系具有空间反演不变性,则能量本征态一定具有确定的宇称31.(5)在非定态下力学量的平均值随时间变化32.(5)体系能级简并必然是某种对称性造成的33.(5)量子体系的守恒量无论在什么态下,平均值和几率分布都不随时间改变34.(5)全同粒子系统的波函数必然是反对称的35.(5)全同粒子体系波函数的对称性将随时间发生改变36.(5)描述全体粒子体系的波函数,对内部粒子的随意交换有确定的对称性37.(6)粒子在中心力场中运动,若角动量是守恒量,那么就不是守恒量38.(6)在中心力场中运动的粒子,轨道角动量各分量都守恒39.(6)中心力场中粒子的能量一定是简并的40.(6)中心力场中粒子能级的简并度至少为41.(8)电子的自旋沿任何方向的投影只能取42.(8)两电子的自旋反平行态为三重态三、证明题:1. (2)试由Schrödinger方程出发,证明,其中2. (3)一维粒子波函数满足定态Schrödinger方程,若、都是方程的解,则有3. (3)设是定态薛定谔方程对应于能量的非简并解,则此解可取为实解4. (2)设和是定态薛定谔方程对应于能量的简并解,试证明二者的线性组合也是该定态方程对应于能量的解。5. (3)对于势垒,试证势中的跃变条件6. (3)设是定态薛定谔方程的一个解,对应的能量为,试证明也是方程的一个解,对应的能量也为7. (3)一维谐振子势场中的粒子处于任意的非定态。试证明该粒子的位置概率分布经历一个周期后复原。8. (3)对于阶梯形方势场 ,若有限,则定态波函数及其导数必定连续。9. (3)证明一维规则势场中运动的粒子,其束缚态能级必定是非简并的10.(4)证明定理:体系的任何状态下,其厄米算符的平均值必为实数11.(4)证明定理:厄米算符的属于不同本征值的本征函数彼此正交12.(4)证明:在定态中几率流密度矢量与时间无关13.(4)令,试证为厄密算符14.(4)试证为厄密算符15.(4)设是一个幺正算符且对可导,证明是厄米算符。16.(4)已知和是厄米算符,证明(+)和2也是厄米算符17.(4)试证明:任何一个力学量算符在它以自己的本征矢为基矢的表象中的表示为对角矩阵18.(4)试证明表象中算符的矩阵元是19.(4)试证明表象中算符的矩阵元是20.(4)若厄米算符具有共同本征函数,即,而且构成体系状态的完备函数组,试证明21.(4)若构成完备基组,证明:22.(4)证明两个线性算符之和仍为线性算符23.(4)设算符,若为的本征函数,相应的本征值为,求证和也是的本征函数,并求出相应的本征值。24.(4)试证明是角动量平方算符属于本征值的本征函数。25.(4)试证明表象变换并不改变算符的本征值26.(4)证明对易关系 27.(4)证明在的本征态下 28.(4)设粒子处于状态下,证明29.(4)证明谐振子的零点能是测不准关系的直接结果。30.(4) 一维体系的哈密顿算符具有分立谱,证明该体系的动量在能量本征态中的平均值等于零31.(4)如果厄米算符A对任何矢量|u>,有<u|A|u>0,则称A为正定算符。试证明算符A=|a><a|为厄米正定算符32.(5)设全同二粒子的哈密顿量为,波函数为,试证明交换算符是个守恒量33.(5)证明在定态下,任意不显含时间t力学量A取值几率分布不随时间改变。34.(5)设力学量A是守恒量,证明在任意态下A的取值概率分布不随时间改变。35.(5)证明:量子体系的守恒量,无论在什么态下,平均值不随时间改变。36.(5)试证在一维势场中运动的粒子所受势壁的作用力在束缚定态中的平均值为0(提示:利用对易关系)37.(5)设系统的哈密顿量为,厄米算符与对易。试证明,其中是的均方根偏差,即,式中尖括号表示求平均值。38.(5)如果,但,试证明的本征值必有简并。39.(5)粒子在对数函数型势场中运动,其中常数。试利用Virial定理证明:各束缚态的动能平均值相等。40.(5)试根据力学量平均值表达式证明力学量平均值随时间的变化为,其中为体系的哈密顿41.(4、5) 证明:宇称算符的本征函数非奇即偶42.(5)设粒子处在对称的双方势阱中(1)在情况下求粒子能级,并证明能级是双重简并;(2)证明取有限值情况下,简并将消失。43.(5、6)证明在氢原子的任何定态中,动能的平均值等于该定态能量的负值,即 44.(6)已知中心力场中运动的粒子哈密顿表示为,证明中心力场中运动的粒子角动量守恒45.(8)证明Pauli算符各个分量的反对易关系46.(8)若电子处于的本征态。试证在此态中,取值或的概率各为。47. (8)设有两个电子,自旋态分别为。证明两个电子处于自旋单态(S=0)和三重态(S=1)的几率分别为48.(10)在一定边界条件下利用定态薛定谔方程求解体系能量本征值与变分原理等价。49.(12)已知在分波法中 ,据此证明光学定理。四、 计算题:1.(2)设一维自由粒子的初态为,求。2.(3)质量为的粒子在一维无限深方势阱中运动,势阱可表示为(1)求解能量本征值和归一化的本征函数;(2)若已知时,该粒子状态为,求时刻该粒子的波函数;(3)求时刻测量到粒子的能量分别为和的几率是多少?(4)求时刻粒子的平均能量和平均位置。3. (3)粒子在一维势阱中运动求粒子的束缚定态能级与相应的归一化波函数。4. (3)设有质量为的粒子(能量)从左入射,碰到势垒,试推导出势中的跃变条件。5. (3)质量为m的粒子,在位势 中运动,其中a. 试给出存在束缚态的条件,并给出其能量本征值和相应的本征函数;b. 给出粒子处于x>0区域中的几率。它是大于1/2,还是小于1/2,为什么? 6. (3)一个质量为m的粒子在一维势场 ,求波函数满足的方程及连续性条件,并给出奇宇称能量本征波函数及相应的本征能量。7. (3)质量为的粒子在一维势场 中运动。求粒子的定态能量与归一化的波函数;粒子在态上的位置平均值。8. (3)如图所示,一电量为质量为的带电粒子处在电量为固定点电荷的强电场中,并被约束在一直线AB上运动,到AB的距离为a,由于产生的电场很强,只能在平衡位置O附近振动,即a远大于粒子的运动范围,设平衡位置O为能量参考点,试求体系可能的低能态能级。 9.(3)一电量为质量为的带电粒子处在强度为E的均匀强电场中,并被约束在一半径为R的圆弧上运动,电场方向如图所示,由于电场很强,只能在平衡位置O附近振动,即R远大于粒子的运动范围,设平衡位置O为能量参考点,试求体系可能的低能态能级。10. (3) 一维谐振子处于基态,求谐振子的1)平均值;2)平均值;3)动量的几率分布函数。(提示:函数满足递推关系:;)。11.(3)把传导电子限制在金属内部的是金属内势的一种平均势,对于下列一维模型(如图) 试就(1),(2)两种情况计算接近金属表面的传导电子的反射和透射几率。12.(3、4)设时,质量为、频率为的谐振子处于 状态,其中是实常数,是厄米多项式。(1) 求归一化常数;(2) 求时刻体系的状态;(3) 求时刻位置的平均值;(4) 求谐振子能量取值及相应几率 13.(3)设一维粒子由处以平面波入射,在原点处受到势能的作用。(1)写出波函数的一般表达式;(2)确定粒子在原点处满足的边界条件;(3)求出该粒子的透 射系数和反射系数;(4)分别指出与时的量子力学效应。14. (3、4、5)设一维线性谐振子处于基态 (1)求 (2)写出本征能量,并说明它反映微观粒子的什么性质 (3)利用位力定理证明:,其中 15. (4)设一维谐振子能量本征函数为。试利用递推公式求谐振子坐标在能量表象中的矩阵表示16.(4、5)一维谐振子时处于基态和第一激发态的叠加态 其中, (1)求时刻位置和动量的平均值; (2)证明对于一维谐振子的任何状态,时刻位置和动量的平均值有关系; (3)求时刻能量的平均值17.(4)设体系处于状态(已归一化,即)。求 的可能测值及平均值; 的可能测值及相应的几率。 18(4)设一量子体系处于用波函数所描述的量子态中。试求(1)在该态下的可能测值和各个值出现的几率;(2)的平均值19.(6)时氢原子的波函数为。忽略自旋和跃迁。 (1)写出系统能量、角动量平方及角动量分量的可能测值(表示成基本物理的函数即可); (2)上述物理量的可能测值出现的几率和期望值; (3)写出时刻的波函数。20.(6)求势场中的粒子的能级和定态波函数(A,B>0) 21.(7、8)设有一个定域电子,受到沿方向均匀磁场的作用,Hamiltonian量(不考虑轨道运动)表为。设时电子自旋“向上”(),求时的平均值。 22. (8)假设一个定域电子(忽略电子轨道运动)在均匀磁场中运动,磁场沿轴正向,电子磁矩在均匀磁场中的势能为:,其中,()为电子的磁矩,自旋用泡利矩阵表示。(1)求定域电子在磁场中的哈密顿量,并列出电子满足的薛定谔方程:;(2)假设时,电子自旋指向轴正向,即,求时,自旋的平均值;(3)求时,电子自旋指向轴负向,即的几率是多少? 23. (8)自旋,并具有自旋磁矩的粒子处于沿 x 方向的均匀磁场B中。已知t=0时,粒子的,求在以后任意时刻发现粒子具有的几率。 24.(8)在表象中求自旋角动量在方向的投影 的本征值和所属的本征函数。25(8)两个自旋为1/2的粒子,在表象中的表示为,其中, 是第i个粒子自旋向上的几率,是第i个粒子自旋向下的几率。a. 求哈密顿量的本征值和本征函数(V0为一常数);b. t=0时,体系处于态,求t时刻发现体系在态 的几率(注:为第i个粒子泡利算符的x, y分量) 26.(8)考虑由两个自旋为 1 的粒子组成的体系,总自旋,求总自旋的平方及 z 分量 (,) 的共同本征态,并表示成和本征函数乘积的线性叠加(取=1)。27.(8)一束自旋为的粒子进入Stern-Gerlach装置SG(I)后被分成两束,去掉其中的一束,另一束()进入第二个SG(II),SG(I)与SG(II)的夹角为。则粒子束穿过SG(II)后又被分为两束,求这两束粒子的相对数目之比。28.(8)试求表象中的矩阵表示29.(8)自旋为1/2的粒子,其自旋角动量算符和动量算符分别为和。令 为和的共同本征态,其本征值分别为和,算符。试问: (1)是否为厄米算符?在以为基的空间中,的矩阵形式如何? (2)的本征值是什么?求出的共同本征函数系30.(8)对自旋为1/2的粒子,是自旋角动量算符,求的本征函数和本征值(是实常数)31.(8)电子处于沿y轴方向的均匀恒定磁场中,t=0时刻在表象中电子的自旋态为 ,不考虑电子的轨道运动。(1)求任意t>0时刻体系的自旋波函数;(2)在t时刻电子自旋各分量的平均值;(3)指出哪些自旋分量是守恒量,并简述其理由。32.(8)考虑两个电子组成的系统。它们空间部分波函数在交换电子空间部分坐标时可以是对称的或是反对称的。由于电子是费米子,整体波函数在交换全部坐标变量(包括空间部分和自旋部分)时必须是反对称的。(1)假设空间部分波函数是反对称的,求对应自旋部分波函数。总自旋算符定义为:。求:和的本征值;(2)假设空间部分波函数是对称的,求对应自旋部分波函数,和的本征值;(3)假设两电子系统哈密顿量为:,分别针对(1)(2)两种情形,求系统的能量。33.(8)两个电子处在自旋单态中,其中分别是自旋算符 和的单粒子自旋态。 (1)试证明:是算符的本征态(和分别是两个单电子的自旋算符); (2)如果测量一个电子的自旋分量,得,那么测量另一个电子的自旋的概率是多少?(3)如果测量态的一个电子的自旋,测量结果表明它处在的本征态,那么再测量另一个电子自旋分量,得到的概率是多少?34.(8)由两个非全同粒子组成的体系,二粒子自旋均为,不考虑轨道运动,粒子间相互作用可写作。设初始时刻()粒子1自旋朝上(),粒子2自旋朝下()。求时刻 (1)粒子1自旋向上的概率; (2)粒子1和2自旋均向上的概率; (3)总自旋为0和1的概率 35.(8)质量为的一个粒子在边长为的立方盒子中运动,粒子所受势能由下式给出:(i)列出定态薛定谔方程,并求系统能量本征值和归一化波函数;(ii)假设有两个电子在立方盒子中运动,不考虑电子间相互作用,系统基态能是多少?并写出归一化系统基态波函数(提示:电子自旋为,是费米子); (iii)假设有两个玻色子在立方盒子中运动,不考虑玻色子间相互作用,系统基态能是多少?并写出归一化系统基态波函数。 36.(2、4、6、8)已知时,氢原子的波函数为,其中满足归一化条件。试(1)写出任意时刻的波函数(2)求能量、轨道角动量和、自旋的可能取值和相应的几率以及平均值(3)计算时刻自旋分量的平均值(4)写出时刻电子处在以原子核为球心,半径为的球体积内,且的几率的表达式37.(6、10)粒子处在无限深球方势阱中(1)求其径向波函数和能量本征值;(2)今加上一微扰(为小量),求能量一级修正值(只求第一激发态的结果)。38. (6、10)一维无限深方势阱中的粒子受到微扰的作用,其中为常数。求基态能量的二级近似与波函数的一级近似。39.(3、10)一维谐振子的哈密顿为若再加上一个外场作用,使用微扰论计算体系的能量到二级修正,并与严格解比较。40.(10)有一两能级体系,哈密顿量为,在表象中,表示为 为微扰,表示微扰程度,试求的本征值和本征态。41. (10)设Hamilton量的矩阵形式为:(1)设c<<1,应用微扰论求H本征值到二级近似;(2)求H 的精确本征值;(3)在怎样条件下,上面二结果一致。 42.(10)设在表象中,与微扰的矩阵为 其中与分别是基态与激发态的零级近似能量,是微小量。(1) 求基态的一级近似能量与零级近似态矢(2) 激发态的二级近似能量与一级近似态矢。43.(10)已知系统的哈密顿量为,。用微扰法求能量至二级修正。44.(10)设粒子在二维无限深势阱中运动,设加上微扰。求基态和第一激发态的一阶能量修正。45.(10)一个取向用角坐标和确定的转子作受碍转动,用下述哈密顿描述:,式中A和B均为常数,且,是角动量平方算符。试用一级微扰论计算系统的p能级(l=1)的分裂,并算出微扰后的零级近似波函数。46.(3、10)对于一维谐振子,取基态试探波函数形式为,为参数。用变分法求基态能量,并与严格解进行比较。47. (3、10)一维无限深势阱加上如图所示的微扰, 则 势函数为试用微扰论求基态能量本和波函数至一级近似。 48. (10)氢原子处于基态:沿z方向加一个均匀弱电场,视电场为微扰。求电场作用后的基态波函数(一级近似),能级(二级近似),平均电矩和电极化系数(不考虑自旋)。49.(10)考虑体系,且,a. 利用变分法,取试探波函数为,求基态能量上限;b.我们知道,如试探波函数为,则基态能量上限为。对这两个基态的能量上限,你能接受哪一个?为什么?50.(10)以为变分函数, 式中为变分参数, 试用变分法求一维谐振子的基态能量和波函数。 已知51.(10)质量为的粒子在一维势场中运动,式中。 (1)用变分法计算基态能量时,在区域内的试探波函数应取下列波函数中的哪一个?为什么?(2)算出基态能量。 提示:必要时可利用积分公式:52.(10)质量为 m 的的粒子在势场 中运动。 (1) 用变分法估算粒子基态能量,试探波函数取为变分参量。 (2) 它是解的上限,还是下限?将它同精确解比较。 (附:积分公式 )53.(10)(1)设氢原子处于沿方向的均匀静磁场中,不考虑自旋,在弱磁场下,求能级的分裂情况;(2)如果沿方向不仅有静磁场,还有均匀静电场,再用微扰方法求能级的分裂情况(取到一级近似,必要时可以利用矩阵元 )。54.(11)设体系的Hamilton量为,频率是实常数。 (1)求体系能量的本征值和本征函数; (2)如果时体系处于状态,求时体系所处的状态;(3)如果时体系处于基态,当一个小的与有关的微扰在时加上后,求时体系跃迁的激发态的几率 55.(11)设为一维谐振子的能量本征函数,且已知,(1) 求;(2) 设该谐振子在时处于基态,并开始受微扰的作用。求经过充分长时间()以后体系跃迁到态的几率56. (11)中微子振荡实验发现:电子中微子可以转变为缪子中微子。我们用波函数表示电子中微子,表示缪子中微子,用非对角项不为零的矩阵表示哈密顿量,计算表明中微子将在电子中微子态和缪子中微子态间振荡。假设:,中微子波函数可表示为:,中微子哈密顿量的矩阵表示:,其中和都是实数;波函数随时间的演化满足薛定谔方程:(1)中微子哈密顿的本征方程是,求对应本征值和归一化本征矢量;(2)假设时,全部是电子中微子:;证明时,中微子波函数是;(3)求时电子中微子转变为缪子中微子的几率 57. (11)基态氢原子处于平行板电场中,若电场是均匀的且随时间按指数下降,即 求经过长时间后氢原子处在2p态的几率。58.(11)一个定域(空间位置不动)的电子处于方向强磁场中,自旋朝下(轴负方向)。此时加上一个方向交变弱磁场,其频率可调。自旋朝上与朝下的能量差可写成。在的条件下,用微扰方法求出很短时间后粒子自旋朝上的几率。59.(12)带有电荷的一维谐振子在光照下发生跃迁。 (1)给出电偶极跃迁的选择定则;(2)设照射光的强度为,计算振子由基态到第一激发态的跃迁速率(如必要,可利用递推公式进行计算)。60.(12)质量为的高能粒子被中心力势散射,求散射微分截面和总截面。61.(12)用玻恩近似法求粒子在势能,时的微分散射截面。提示:必要时可用积分公式,62.(12)试用玻恩近似公式计算库仑散射的微分截面,库仑势为,入射粒子质量为,速度为,为实数。提示:必要时可用积分公式:-

    注意事项

    本文(曾量子力学题库(网用).doc)为本站会员(豆****)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开