欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年人教版初中数学知识点打印版.docx

    • 资源ID:27235639       资源大小:294.53KB        全文页数:34页
    • 资源格式: DOCX        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年人教版初中数学知识点打印版.docx

    精选学习资料 - - - - - - - - - 名师总结 优秀学问点中学数学学问点总结初一(上)第一章 有理数1. 有理数: 1 凡能写成qp,q为整数且p0形式的数整数正整数p正有理数正整数正分数零2 有理数分类 : 有理数零有理数分数负整数负整数正分数负有理数负分数负分数留意: 0 即不是正数,也不是负数;-a 不肯定是负数, +a 也不肯定是正数;不是有理数 ;2数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3相反数:1 只有符号不同的两个数,互为相反数,即 0 的相反数仍是 0;2 a+b=0 a 、b 互为相反数 . a 和- a 互为相反数;4. 肯定值:1 肯定值的意义是数轴上表示某数的点离开原点的距离;2 aa0aaa0或aaaa0 ;a0a0或a a0 a0 aa0正数的肯定值是其本身,0 的肯定值是 0,负数的肯定值是它的相反数肯定值的问题常常分类争论,零既可以和正数一组也可以和负数一组;5. 有理数比大小:两个负数比大小,肯定值大的反而小;数轴上的两个数,右边的数总比左边的数大;大数 - 小数 0 ,小数 - 大数 0 6. 倒数:乘积为 1 的两个数互为倒数;留意: 0 没有倒数;如 a 0,那么 a 的倒数是 1 ;a如 ab=1 a 、b 互为倒数;如 ab=-1 a 、b 互为负倒数 . 7. 有理数加法法就:(1)同号两数相加,取相同的符号,并把肯定值相加;(2)异号两数相加,取肯定值较大的符号,并用较大的肯定值减去较小的肯定 值;名师归纳总结 - - - - - - -第 1 页,共 19 页精选学习资料 - - - - - - - - - 名师总结 优秀学问点(3)一个数与 0 相加,仍得这个数 . 8有理数加法的运算律:(1)加法的交换律: a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9有理数减法法就: 减去一个数, 等于加上这个数的相反数; 即 a-b=a+(-b ). 10 有理数乘法法就:(1)两数相乘,同号为正,异号为负,并把肯定值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数打算,负因数为奇数个时乘积为负,负因数为偶数个时乘积为正 . 11 有理数乘法的运算律:(1)乘法的交换律: ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的安排律: a(b+c)=ab+ac 12有理数除法法就:除以一个数等于乘以这个数的倒数;留意:零不能做除数,即a无意义. 013乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫 做幂;14有理数乘方的法就:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;a10)这留意: 当 n 为正奇数时 : -a n=-a n 或 a-b n=-b-a n当 n 为正偶数时 : -a n =a n 或 a-b n=b-a n15科学记数法: 把一个大于 10 的数记成 a× 10 n 的形式,(其中 1种记数法叫科学记数法 . 16. 近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确 到那一位 . 17. 有效数字:从左边第一个不为零的数字起,到精确的位数止,全部数字,都叫这个近似数的有效数字. . 18. 混合运算法就:先乘方,后乘除,最终加减其次章整式的加减1单项式:数字或字母的乘积叫单项式. 2单项式的系数与次数:单项式中不为零的数字因数,叫单项式的系数;单项 式中全部字母指数的和,叫单项式的次数 . 3多项式:几个单项式的和名师归纳总结 - - - - - - -第 2 页,共 19 页精选学习资料 - - - - - - - - - 名师总结 优秀学问点4多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;5. 同类项:所含字母相同,并且相同字母的指数也相同的单项式叫做同类型;6. 合并同类项:将同类项的系数相加减,字母和字母的指数不变;第三章 一元一次方程1一元一次方程:只含有一个未知数,并且未知数的次数是 1,并且含未知数项的系数不是零的整式方程是一元一次方程 . 2一元一次方程的标准形式:ax+b=0(x 是未知数, a、b 是已知数, 且 a 0). 3一元一次方程解法的一般步骤:整理方程 去分母 去括号 移项 合并同类项 系数化为 1 (检验方程的解) . 4列一元一次方程解应用题:(1)读题分析法 : 多用于“ 和,差,倍,分问题”认真读题,找出表示相等关系的关键字,例如: “ 大,小,多,少,是,共,合,为,完成,增加,削减,配套-” ,利用这些关键字列出文字等式,并且据题意设出未知数,最终利用题目中的量与量的关系填入代数式,得到方程 . (2)画图分析法 : 多用于“ 行程问题”. 5列方程解应用题的常用公式:(1)行程:距离 =速度· 时间速度距离时间距离;时间速度(2)工程:工作量 =工效· 工时工效工作量全体工时工作量工时工效部分(3)比率:部分 =全体· 比率比率部分;全体比率(4)水流:顺流速度 =静水速度 +水流速度,逆流速度 =静水速度 - 水流速度;(5)价格:售价 =定价· 折·1,利润=售价 - 成本,利润率售价成本100 %;10成本(6)周长、面积、体积: C圆=2 R,S圆= R 2,C长方形 =2a+b ,S 长方形=ab,C正方形=4a,S正方形=a 2,S 环形= R 2-r2,V长方体=abc ,V 正方体=a 3,V 圆柱 = R 2h ,V 圆锥=1 R 2h3第四章图形的熟悉初步1. 立体图形的三视图 / 绽开图都是平面图形;面动成体2. 直线、射线、线段的区分(1)端点各数:直线没有端点,射线有一个端点,线段有两个端点;(2)可度量性:直线和射线都不行度量,所以没有大小可言,线段有大小;(3)延长性:直线可以向两个方向延长;射线可以向一个方向延长;线段没有延长性;名师归纳总结 - - - - - - -第 3 页,共 19 页精选学习资料 - - - - - - - - - 名师总结 优秀学问点3. 角的表示方法:三个大写字母适用于任何角;一个大写字母适用独 立角;一个阿拉伯数字或希腊字母适用非复合角;4. 余角和补角:和为90° 的两个角互为余角;和为180° 的两个角互为补角;5. 定理、公理:(1)两点确定一条直线;(2)两点之间线段最短;(3)等角(或同角)的余角相等,等角(或同角)的补角相等;初一(下)第五章 相交线与平行线 1. 邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两 个角是邻补角;2. 对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个 角互为对顶角;3. 垂线:两条直线相交成直角时,叫做相互垂直,其中一条叫做另一条的垂线;4. 平行线:在同一平面内,永不相交的两条直线叫做平行线;5. 同位角、内错角、同旁内角:同位角: 1 与5、2 与像这样具有相同位置关系的一对角叫做同位角;内错角:与 6、与像这样的一对角叫做内错 角;同旁内角:与 5、与像这样的一对角叫做同 旁 内角;6. 命题:判定一件事情的语句叫命题;7. 平移:在平面内,将一个图形沿某个方向移动肯定的距 离,图形的这种移动叫做平移变换,简称平移;8. 对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得 到的,这样的两个点叫做对应点;9. 对顶角的性质:对顶角相等;10垂线的性质:1:过一点有且只有一条直线与已知直线垂直;2:连接直线外一点与直线上各点的全部线段中,垂线段最短;11. 平行公理:经过直线外一点有且只有一条直线与已知直线平行;平行公理的推论:假如两条直线都与第三条直线平行,那么这两条直线也相互平行;12. 平行线的性质:1:两直线平行,同位角相等;2:两直线平行,内错角相等;3:两直线平行,同旁内角互补;名师归纳总结 - - - - - - -第 4 页,共 19 页精选学习资料 - - - - - - - - - 名师总结 优秀学问点13. 平行线的判定:1:同位角相等,两直线平行;2:内错角相等,两直线平行;3:同旁内角互补,两直线平行;第六章 实数1. 算术平方根:假如 x 2=a,那么正数 x 叫做 a 的算术平方根,记作 a ;0 的算术平方根为 0;从定义可知,只有当 a0 时,a 才有算术平方根;2. 平方根:假如一个数 x 的平方根等于 a,即 x 2=a,那么数 x 就叫做 a 的平方根;3. 正数有两个平方根(一正一负)它们互为相反数;它本身;负数没有平方根;0 只有一个平方根,就是4. 正数的立方根是正数; 0 的立方根是 0;负数的立方根是负数 ;5. 实数的分类整数自然数 ,0,1,23a,0 b负整数,1,23 .有理数分数小数正分数1,22整数、有限小数、无限循环小数2 13实数负分数abab,23无理数正有理数无限不循环小数负有理数第七章平面直角坐标系1. 有序数对:有次序的两个数a 与 b 组成的数对叫做有序数对,记做(a,b )2. 平面直角坐标系:在平面内,两条相互垂直且有公共原点的数轴组成平面直 角坐标系;3. 横轴、纵轴、原点:水平的数轴称为x 轴或横轴;竖直的数轴称为y 轴或纵轴;两坐标轴的交点为平面直角坐标系的原点;4. 坐标:对于平面内任一点 P,过 P 分别向 x 轴,y 轴作垂线, 垂足分别在 x 轴,y 轴上,对应的数 a,b 分别叫点 P的横坐标和纵坐标;5. 象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫其次象限、第三象限、第四象限;留意:坐标轴上的点不在任何一个象限内;第八章 二元一次方程组名师归纳总结 - - - - - - -第 5 页,共 19 页精选学习资料 - - - - - - - - - 名师总结 优秀学问点1. 二元一次方程: 含有两个未知数, 并且未知数的指数都是 1,像这样的方程叫做二元一次方程,一般形式是ax+by=ca 0,b 0 ;2. 二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方 程组;3. 二元一次方程的解:使二元一次方程两边的值相等的未知数的值;4. 二元一次方程组的解:二元一次方程组的两个方程的公共解;5. 消元:将未知数的个数由多化少,逐一解决的想法;6. 代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一 个方程,实现消元,进而求得这个二元一次方程组的解,简称代入法;7. 加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的 两边分别相加或相减,就能消去这个未知数,简称加减法;第九章 不等式与不等式组1. 用符号“ ” “ ” “ ” “ ” “ ” 表示大小关系的式子叫做不等式;2. 不等式的解:使不等式成立的未知数的值;3. 不等式的解集:一个含有未知数的不等式的全部解;4. 一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是 1;5. 一元一次不等式组:关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组;6. 不等式的性质:1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;3:不等式的两边都乘以(或除以)同一个负数,不等号的方向转变;第十章 数据的收集、整理与描述 1. 全面调查:考察全体对象的调查方式叫做全面调查;2. 抽样调查:调查部分数据,依据部分来估量总体的调查方式称为抽样调查;3. 总体:要考察的全体对象称为总体;4. 个体:组成总体的每一个考察对象称为个体;5. 样本:被抽取的全部个体组成一个样本;6. 样本容量:样本中个体的数目称为样本容量;7. 频数:一般地,我们称落在不同小组中的数据个数为该组的频数;8. 频率:频数与数据总数的比为频率;9. 组数和组距:在统计数据时,把数据依据肯定的范畴分成如干各组,分成组的个数称为组数,每一组两个端点的差叫做组距;名师归纳总结 - - - - - - -第 6 页,共 19 页精选学习资料 - - - - - - - - - 名师总结 优秀学问点初二(上)第十一章 三角形 1. 三角形:由不在同始终线上的三条线段首尾顺次相接所组成的图形;2. 三边关系: 三角形任意两边的和大于第三边,任意两边的差小于第三边;3. 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段;4. 中线:在三角形中,连接一个顶点和它的对边中点的线段;5. 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段;6. 三角形的稳固性:三角形的外形是固定的;7. 多边形:在平面内,由一些线段首尾顺次相接组成的图形;8. 多边形的内角:多边形相邻两边组成的角;9. 多边形的外角:多边形的一边与它的邻边的延长线组成的角;10. 多边形的对角线:连接多边形不相邻的两个顶点的线段;11. 正多边形:在平面内,各个角都相等,各条边都相等的多边形;12. 平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全掩盖;13. 三角形的内角和为 180° ;14. 三角形外角的性质:1:三角形的一个外角 = 和它不相邻的两个内角的和;2:三角形的一个外角 任何一个和它不相邻的内角;多边形内角和公式: (n-2 ) · 180 °多边形的外角和: 360° ;多边形对角线的条数:从 n 边形的一个顶点动身可以引(n-3 )条对角线,把多边形分为( n-2 )个三角形, n 边形共有 nn-3 条对角线;2第十二章 全等三角形 1. 全等三角形:大小和外形完全相同的两个三角形;2全等三角形的性质:全等三角形的对应角相等、对应边相等;3. 三角形全等的判定公理及推论有:(1)“ 边角边” “SAS” :两边及其夹角对应相等(2)“ 角边角” “ASA” :两角及其夹边对应相等(3)“ 边边边” “SSS”:三组对应边相等(4)“ 角角边” “AAS” :两角及其中一角的对边对应相等(5)“ HL” 斜边和直角边相等4. 角平分线推论:角的内部到角的两边的距离相等的点在角的平分线上;名师归纳总结 - - - - - - -第 7 页,共 19 页精选学习资料 - - - - - - - - - 第十三章轴对称名师总结优秀学问点1. 对称轴:假如一个图形沿某条直线折叠后,直线两旁的部分能够相互重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴;2. 性质:(1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线;(2)角平分线上的点到角两边距离相等;(3)线段垂直平分线上的任意一点到线段两个端点的距离相等;(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上;(5)轴对称图形上对应线段相等、对应角相等;3. 等腰三角形的性质:等腰三角形的两个底角相等(等边对等角);4. 等腰三角形的顶角平分线、 底边上的高、 底边上的中线相互重合, 简称为“ 三 线合一” ;5. 等腰三角形的判定:有两个角相等的三角形是等腰三角形(等角对等边);6. 等边三角形角的特点:三个内角相等,等于60°7. 等边三角形的判定:三个角都相等的三角形是等边三角形;有一个角是 60° 的等腰三角形是等边三角形有两个角是 60° 的三角形是等边三角形;8. 直角三角形中, 30° 角所对的直角边等于斜边的一半;9直角三角形斜边上的中线等于斜边的一半;第十四章 整式的乘除与分解因式m n m n 1. 同底数幂的乘法法就 : a a a m,n 都是正数 m n mn 2. 幂的乘方法就: a a m,n 都是正数 一般地 , a n aa nn 当 当 nn 为偶数时为奇数时 ,.3. 整式的乘法(1)单项式乘法法就 : 单项式相乘 , 把它们的系数、相同字母分别相乘,对于只 在一个单项式里含有的字母,连同它的指数作为积的一个因式;(2)单项式与多项式相乘 : 单项式与多项式相乘,就是用单项式去乘多项式的 每一项,再把所得的积相加;(3)多项式与多项式相乘:先用一个多项式中的每一项乘以另一个多项式的每 一项,再把所得的积相加;名师归纳总结 4平方差公式 : aba2b2a2b2b2第 8 页,共 19 页5完全平方公式 : aba2ab- - - - - - -精选学习资料 - - - - - - - - - 6. 同底数幂的除法法就名师总结优秀学问点amanamn: 同底数幂相除 , 底数不变 , 指数相减 , 即a 0,m、n 都是正数 , 且 m>n. 留意:( 1)任何不等于 0 的数的 0 次幂等于 1 , 即a01 a0;(2)任何不等于 0 的数的 -p 次幂p 是正整数 , 等于这个数的 p 的次幂的倒数 , 即ap1 a 0,p 是正整数 ;ap7整式的除法 单项式除以单项式 : 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,就连同它的指数作为商的一个因式;多项式除以单项式 : 多项式除以单项式, 先把这个多项式的每一项除以单项式,再把所得的商相加 . 8. 分解因式:把一个多项式化成几个整式的积的形式 式分解因式 . , 这种变形叫做把这个多项9. 分解因式的一般方法: 1. 提公共因式法; 2. 运用公式法; 3. 十字相乘法;10. 分解因式的步骤:1 先看各项有没有公因式 , 如有 , 就先提取公因式 ; 2 再看能否使用公式法 ; 3 看能不能用十字相乘法分解;留意:1 因式分解的最终结果必需是几个整式的乘积, 否就不是因式分解 ; 2 因式分解的结果必需进行到每个因式在有理数范畴内不能再分解为止 . 第十五章 分式1. 分式:形如 A ,A、B 是整式, B 中含有未知数且B子,B 为分母;2. 分式有意义的条件:分母不等于 0B 不等于 0 的整式 ;A 为分3. 约分:把一个分式的分子和分母的公因式 不为 1 的数)约去;0 的整4. 通分:异分母的分式化成同分母的分式;5分式的基本性质 : 分式的分子和分母同时乘以(或除以)同一个不为式,分式的值不变;6. 最简分式 : 一个分式的分子和分母没有公因式. . 7分式的四就运算:, 分母不变,把分子相加减(1)同分母分式加减法就: 同分母的分式相加减(2)异分母分式加减法就 : 异分母的分式相加减 , 先通分 , 化为同分母的分式 , 然名师归纳总结 后再按同分母分式的加减法法就进行运算. 第 9 页,共 19 页- - - - - - -精选学习资料 - - - - - - - - - 名师总结 优秀学问点(3)分式的乘法法就 : 两个分式相乘 , 把分子相乘的积作为积的分子 , 把分母相 乘的积作为积的分母 . (4)分式的除法法就 : 两个分式相除 , 把除式的分子和分母颠倒位置后再与被除式相乘 . 除以一个分式,等于乘以这个分式的倒数 8. 分式方程 : 分母中含有未知数的方程叫做分式方程9. 分式方程的解法: ; , 将分式方程化为整式方程; 去分母 方程两边同时乘以最简公分母按解整式方程的步骤求出未知数的值验根 求出未知数的值后必需验根, 由于在把分式方程化为整式方程的过程中 , 扩大了未知数的取值范畴 , 可能产生增根 . 初二(下)第十六章 二次根式1、二次根式的定义: 式子叫做二次根式,其中叫做被开方数;2、最简二次根式:满意以下两个条件的二次根式是最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有开得尽方的整数或整式;3、同类二次根式:几个二次根式化成最简二次根式以后,假如被开方数相同,这几个二次根式叫做同类二次根式;4、二次根式的性质:(1) | | ()(2) - ()()(3)积的算数平方根性质:(,)(4)商的算数平方根性质:aa(,)bb5、二次根式的乘法:(,)即两个二次根式相乘,根指数不变,被开方数相乘;名师归纳总结 - - - - - - -第 10 页,共 19 页精选学习资料 - - - - - - - - - 名师总结 优秀学问点留意:法就是由积的算数平方根的性质 来即得;6、二次根式的除法:aa(,)bb(,)反过留意:法就是由商的算数平方根的性质aa(,)反过来得bb到的;7、二次根式的加减:二次根式相加减,先把各个二次根式化成最简二次根式,在合并同类二次根式,合并同类二次根式与合并同类项类似,将同类二次根式 的“ 系数” 相加减,被开方数和根指数不变;留意:二次根式加减混合运算的实质就是合并同类二次根式,不是同类二次根 式不能合并;8、二次根式的混合运算:二次根式的混合运算次序与实数的运算次序一样,先乘方,后乘除,最终 加减,有括号的先算括号内的;在运算过程中,有理数(式)中的运算率及乘法公式在二次根式的运算中仍旧适用;9、比较两数大小的常用方法:(1)平方法:如,且22,就;(2)把跟号外的非负因式移到根号内,然后比较被开方数的大小;第十七章 勾股定理21. 勾股定理: 假如直角三角形的两直角边长分别为 a,b,斜边长为 c,那么 ab 2=c 2;勾股定理逆定理: 假如三角形三边长 a,b,c 满意 a 2b 2=c 2;,那么这个三角形是直角三角形;2. 定理:经过证明被确认正确的命题;3. 我们把题设、结论正好相反的两个命题叫做互逆命题;假如把其中一个叫做原命题,那么另一个叫做它的逆命题; (例如:勾股定理与勾股定理逆定理)名师归纳总结 - - - - - - -第 11 页,共 19 页精选学习资料 - - - - - - - - - 名师总结 优秀学问点第十八章 四边形 1. 平行四边形定义:有两组对边分别平行的四边形叫做平行四边形;2. 平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行 四边形的对角线相互平分;3. 平行四边形的判定: (1)两组对边分别相等的四边形是平行四边形;(2)对角线相互平分的四边形是平行四边形;(3)两组对角分别相等的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形;4. 三角形的中位线平行于三角形的第三边,且等于第三边的一半;AC5. 直角三角形斜边上的中线等于斜边的一半;6. 矩形的定义:有一个角是直角的平行四边形;7. 矩形的性质:矩形的四个角都是直角;矩形的对角线相互平分且相等;8. 矩形判定定理:(1)有一个角是直角的平行四边形叫做矩形;(2)对角线相等的平行四边形是矩形;9. 菱形的定义(3)有三个角是直角的四边形是矩形;:邻边相等的平行四边形;10. 菱形的性质:菱形的四条边都相等;菱形的两条对角线相互垂直,并且每一 条对角线平分一组对角;11. 菱形的判定定理:(1)一组邻边相等的平行四边形是菱形;(2)对角线相互垂直的平行四边形是菱形;(3)四条边相等的四边形是菱形;12. 菱形面积 =1/2× ab(a、b 为两条对角线)13. 正方形定义:一个角是直角的菱形或邻边相等的矩形;14. 正方形的性质:四条边都相等,四个角都是直角;正方形既是矩形,又是菱形;15. 正方形判定定理:(1)邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形;16. 梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形;17. 直角梯形的定义:有一个角是直角的梯形 18. 等腰梯形的定义:两腰相等的梯形;19. 等腰梯形的性质: 等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等;20. 等腰梯形判定定理: 同一底上两个角相等的梯形是等腰梯形;对角线相等的梯形是等腰梯形;名师归纳总结 - - - - - - -第 12 页,共 19 页精选学习资料 - - - - - - - - - 第十九章一次函数名师总结优秀学问点y=kx+bk 0 的形式 , 就1. 一次函数:如两个变量x,y 间的关系式可以表示成称 y 是 x 的一次函数 x 为自变量 ,y 为因变量 ;特殊地, 当 b=0 时, 称 y 是 x 的正比例函数 ;11 2 3 k0b.011 2 3 b.0b02k0b02b03b032. 正比例函数一般式: y=kx( k 0),其图象是经过原点 0,0 的一条直线;当k>0 时,直线 y=kx 经过第一、三象限 ,y 随 x 的增大而增大, 当 k<0 时,直线 y=kx经过其次、四象限 ,y 随 x 的增大而减小,在一次函数 x 的增大而增大 ; 当 k<0 时,y 随 x 的增大而减小;3. 已知两点坐标求函数解析式的方法叫待定系数法其次十章 数据的分析y=kx+b 中: 当 k>0 时,y 随1. 加权平均数: Mw = W1X1 + W2X2 + + WnXn / W1+W2+ +Wn 留意: 权反映了某个数据在整个数据中的重要程度;2. 中位数:将一组数据依据由小到大(或由大到小)的次序排列,假如数据的个数是奇数,就处于中间位置的数就是这组数据的中位数;假如数据的个数是 偶数,就中间两个数据的平均数就是这组数据的中位数;3. 众数:一组数据中显现次数最多的数据就是这组数据的众数;4. 极差:组数据中的最大数据与最小数据的差叫做这组数据的极差;5. 方差:2 sx1x2x2x2xnx2,其中 x 为x1,x2,xn的平均数;n留意:方差越大,数据的波动越大;方差越小,数据的波动越小,就越稳固;名师归纳总结 - - - - - - -第 13 页,共 19 页精选学习资料 - - - - - - - - - 名师总结 优秀学问点初三(上)其次十一章 一元二次方程1. 一元二次方程:方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,形如 ax 2+bx+c=0(a 0)其中 ax 2是二次项,a 是二次项系数; bx 是一次项, b 是一次项系数; c 是常数项2. 一元二次方程的解法:(1)运用开平方法解形如(x+m)2=n(n0)的方程;领悟降次 转化的数学思想(2)配方法:将一元二次方程变形为 x+p =q 的形式,假如 q0,方程的根是 x=-p ± q;假如 q0, 方程无实根(3)公式法:将方程化为一般形式 ax 2+bx+c=0,当 b 2-4ac 0 时,.将 a、b、c2代入式子 x= b b 4 ac 就得到方程的根2 a其次十二章 二次函数1. 定义:自变量 x 和因变量 y 之间满意 y=ax就称 y 为 x 的二次函数;b22. 二次函数的解析式三种形式;一般式: y=ax2 +bx+ca 0 顶点式 :ya xh 2kya xb24ac2a4 a2+bx+ca 0, a、b、c 为常数 ,交点式 :y a x x 1 x x 2 仅在抛物线与 x 轴有两个交点时使用3. 二次函数 y=ax 2+bx+ca 0, a、b、c 为常数 图像与性质:对称轴:x2 ba y 2顶点坐标: b, 4 ac b2 a 4 aO x 与 y 轴交点坐标( 0,c)4. 增减性:当 a>0 时,对称轴左边, y 随 x 增大而减小;对称轴右边,y 随 x 增大而增大;当 a<0 时,对称轴左边, y 随 x 增大而增大;对称轴右边,y 随 x 增大而减小5. 五点法画二次函数图像:顶点、与x 轴两个交点、与 y 轴交点及其对称点;名师归纳总结 - - - - - - -第 14 页,共 19 页精选学习资料 - - - - - - - - - 名师总结 优秀学问点6. 图像平移步骤(1)配方ya xh2k ,确定顶点( h,k )(2)对 x 轴 左加右减;对 y 轴 上加下减7. 二次函数的对称性 二次函数是轴对称图形,如两个对称点的横坐标分别为x1, x2 ,那么对称轴xx 12x28. 依据图像判定 a,b,c 的符号(1)a 开口方向(2)b 对称轴与 a 左同右异 9. 二次函数与一元二次方程的关系(1)抛物线 y=ax 2 +bx+c 与 x 轴交点的横坐标 x1, x2 是一元二次方程 ax 2 +bx+c=0(a 0)的根;(2)抛物线 y=ax 2 +bx+c,当 y=0 时,抛物线便转化为一元二次方程 ax 2 +bx+c=0 (3)b 2 4 ac >0 时,一元二次方程有两个不相等的实根,二次函数图像与 x 轴有两个交点;b 2 4 ac =0 时,一元二次方程有两个相等的实根,二次函数图像与 x 轴有一个交点;b 2 4 ac <0 时,一元二次方程有不等的实根,二次函数图像与 x 轴没有交点;其次十三章 旋转 1. 旋转:在平面内,将一个图形绕一个点按某个方向转动一个角度,这样的运动叫做图形的旋转;这个定点叫做旋转中心,转动的角度叫做旋转角;留意:图形的旋转是图形上的每一点在平面上围着某个固定点旋转固定角度的位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和外形没有转变;)2. 旋转对称图形:把一个图形围着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋 转角(旋转角小于 0° ,大于 360° );3中心对称图形与中心对称:中心对称图形:假如把一个图形围着某一点旋转 我们就说,这个图形成中心对称图形;180 度后能与自身重合,那么中心对称:假如把一个图

    注意事项

    本文(2022年人教版初中数学知识点打印版.docx)为本站会员(Che****ry)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开