2022年小学数学应用题常用公式.docx
精选学习资料 - - - - - - - - - 学习必备 欢迎下载学校数学应用题常用公式大全一般运算规章1. 每份数× 份数总数总数÷ 每份数份数总数÷ 份数每份数1 倍数2. 1 倍数× 倍数几倍数几倍数÷1 倍数倍数几倍数÷ 倍数3. 速度× 时间路程路程÷ 速度时间路程÷ 时间速度工作总量÷4. 单价× 数量总价总价÷ 单价数量总价÷ 数量单价5. 工作效率× 工作时间工作总量工作总量÷ 工作效率工作时间工作时间工作效率6 . 加数加数和和一个加数另一个加数7. 被减数减数差被减数差减数差减数被减数8. 因数× 因数积积÷ 一个因数另一个因数9. 被除数÷ 除数商被除数÷ 商除数商× 除数被除数行程类公式【一般行程问题公式】平均速度× 时间 =路程;路程÷ 时间 =平均速度;路程÷ 平均速度 =时间;【同向行程问题公式】追及 拉开 路程÷ 速度差 = 追及 拉开 时间;追及 拉开 路程÷ 追及 拉开 时间 =速度差; 速度差 × 追及 拉开 时间 =追及 拉开 路程;【反向行程问题公式】反向行程问题可以分为“ 相遇问题” 二人从两地动身,相向而行 和“ 相离问题” 两人背向而行 两种;这两种题,都可用下面的公式解答: 速度和 × 相遇 离 时间 =相遇 离路程;相遇 离 路程÷ 速度和 = 相遇 离 时间;相遇 离 路程÷ 相遇 离 时间 =速度和;【列车过桥问题公式】 桥长 +列车长 ÷ 速度 =过桥时间; 桥长 +列车长 ÷ 过桥时间 =速度;速度× 过桥时间 =桥、车长度之和;【行船问题公式】1 一般公式:静水速度 船速 +水流速度 水速 =顺水速度;船速 -水速 =逆水速度; 顺水速度 +逆水速度 ÷ 2=船速; 顺水速度 - 逆水速度 ÷ 2=水速;名师归纳总结 - - - - - - -第 1 页,共 7 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载2 两船相向航行的公式:甲船顺水速度 +乙船逆水速度 =甲船静水速度 +乙船静水速度3 两船同向航行的公式:后 前 船静水速度 - 前 后 船静水速度 =两船距离缩小 拉大 速度; 求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目 ;商品销售问题的公式总价 =单价× 数量数量 =总价÷ 单价单价 =总价÷ 数量利润与折扣问题的公式利润售出价成本利润率利润÷ 成本×100%售出价÷ 成本1× 100% 涨跌金额本金× 涨跌百分比折扣实际售价÷ 原售价×100%折扣 1 利息本金× 利率× 时间税后利息本金× 利率× 时间×120% 工程问题公式1 一般公式:工效× 工时 =工作总量;工作总量÷ 工时 =工效;工作总量÷ 工效 =工时;2 用假设工作总量为“1” 的方法解工程问题的公式:1÷ 工作时间 =单位时间内完成工作总量的几分之几;1÷ 单位时间能完成的几分之几 =工作时间; 留意:用假设法解工程题,可任意假定工作总量为2、3、4、5 ;特殊是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简洁的整数工程问题,运算将变得比较简便; 浓度问题的公式名师归纳总结 溶质的重量溶剂的重量溶液的重量第 2 页,共 7 页溶质的重量÷ 溶液的重量×100% 浓度溶液的重量× 浓度溶质的重量溶质的重量÷ 浓度溶液的重量- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载数字问题的公式一般可设个位数字为 a,十位数字为 b,百位数字为 c 十位数字可表示为 10b+a,百位数字可表示为 100c+10b+a 然后抓住数字间或新数、原数之间的关系找等量关系列方程鸡兔问题公式1 已知总头数和总脚数,求鸡、兔各多少: 总脚数 - 每只鸡的脚数× 总头数 ÷ 每只兔的脚数 总头数 - 兔数 =鸡数;- 每只鸡的脚数 = 兔数;或者是 每只兔脚数× 总头数- 总脚数 ÷ 每只兔脚数- 每只鸡脚数 = 鸡数;总头数 - 鸡数 =兔数;例如,“ 有鸡、兔共36 只,它们共有脚100 只,鸡、兔各是多少只?”解一 100- 2× 36 ÷ 4 -2=14 只 兔;36-14=22 只 鸡;解二4 × 36 - 100÷ 4 -2=22 只 鸡;36-22=14 只 兔; 答略 2 已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式 每只鸡脚数× 总头数- 脚数之差 ÷ 每只鸡的脚数+每只兔的脚数 = 兔数;总头数 - 兔数 =鸡数或 每只兔脚数× 总头数+鸡兔脚数之差 ÷ 每只鸡的脚数+每只免的脚数 = 鸡数;总头数 - 鸡数 =兔数; 例略 3 已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式; 每只鸡的脚数× 总头数+鸡兔脚数之差 ÷ 每只鸡的脚数+每只兔的脚数 = 兔数;总头数 - 兔数 =鸡数;或 每只兔的脚数× 总头数- 鸡兔脚数之差 ÷ 每只鸡的脚数+每只兔的脚数 = 鸡数;总头数 - 鸡数 =兔数; 例略 4 得失问题 鸡兔问题的推广题 的解法,可以用下面的公式:1 只合格品得分数× 产品总数- 实得总分数 ÷ 每只合格品得分数 +每只不合格品扣分数= 不合格品数;或者是总产品数- 每只不合格品扣分数× 总产品数 +实得总分数 ÷ 每只合格品得分数 +每只不合格品扣分数 =不合格品数;例如, “ 灯泡厂生产灯泡的工人,按得分的多少给工资;每生产一个合格品记 4 分,每生产一个不合格品不仅不记分,仍要扣除 15 分; 某工人生产了 1000 只灯泡, 共得 3525 分,问其中有多少个灯泡不合格?”解一4 × 1000 - 3525÷ 4+15=475÷ 19=25个 解二 1000- 15 × 1000+3525÷ 4+151000- 18525÷ 19=1000-975=25 个 答略 “ 得失问题” 也称“ 运玻璃器皿问题” ,运到完好无损者每只给运费× × 元,破旧者名师归纳总结 不仅不给运费,仍需要赔成本× × 元 ;它的解法明显可套用上述公式; 第 3 页,共 7 页- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载5 鸡兔互换问题 已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题 ,可用下面的公式: 两次总脚数之和 ÷ 每只鸡兔脚数和+ 两次总脚数之差 ÷ 每只鸡兔脚数之差 ÷ 2=鸡数; 两次总脚数之和 ÷ 每只鸡兔脚数之和- 两次总脚数之差 ÷ 每只鸡兔脚数之差 ÷ 2=兔数;例如,“ 有一些鸡和兔,共有脚44 只,如将鸡数与兔数互换,就共有脚52 只;鸡兔各是多少只?”解52+44 ÷ 4+2+52- 44 ÷ 4 -2 ÷ 2=20÷ 2=10只 鸡52+44 ÷ 4+2 -52- 44 ÷ 4 -2 ÷ 2=12÷ 2=6只 兔 答略 图形运算公式1. 正方形C周长 S 面积 a 边长周长边长×4 C= 4a 面积 = 边长× 边长 S= a× a 2. 正方体V:体积 a:棱长表面积 = 棱长× 棱长×6 S 表= a× a× 6 体积 = 棱长× 棱长× 棱长 V= a× a× a 3 .长方形C周长 S 面积 a 边长周长 = 长+宽 × 2 C= 2a+b 面积 = 长× 宽 S= ab 4. 长方体V:体积 s:面积 a:长 b: 宽 h:高表面积 = 长× 宽 +长× 高 +宽× 高 × 2 S=2ab+ah+bh 体积 = 长× 宽× 高 V= abh 5. 三角形s 面积 a 底 h 高面积 = 底× 高÷2 s= ah÷ 2 三角形三个内角和为180o三角形高 = 面积× 2÷ 底三角形底 = 面积 × 2÷ 高6. 平行四边形s 面积 a 底 h 高面积 = 底× 高 s= ah 7. 梯形名师归纳总结 s 面积 a 上底 b 下底h 高第 4 页,共 7 页- - - - - - -精选学习资料 - - - - - - - - - 面积 = 上底 +下底 × 高÷2 学习必备h÷ 2 欢迎下载s= a+b×8. 圆形S面积 C 周长 d=直径 r=半径周长 = 直径× = 2× × 半径 C= d= 2r 面积 = 半径× 半径× 9. 圆柱体v:体积 h:高 s;底面积r:底面半径c:底面周长2 侧面积 = 底面周长× 高表面积 = 侧面积 +底面积×体积 = 底面积× 高体积侧面积÷2× 半径10. 圆锥体v:体积 h:高 s;底面积r:底面半径体积 = 底面积× 高÷3 学校奥数公式和差问题的公式和差 ÷ 2 大数 和差 ÷ 2 小数和倍问题的公式和÷ 倍数 1 小数小数× 倍数大数或 和小数大数 差倍问题的公式差÷ 倍数 1 小数小数× 倍数大数或 小数差大数 植树问题的公式1. 非封闭线路上的植树问题主要可分为以下三种情形:假如在非封闭线路的两端都要植树 ,那么:株数段数 1 全长÷ 株距 1 全长株距×株数 1 株距全长÷株数 1 假如在非封闭线路的一端要植树 ,另一端不要植树 ,那么:株数段数全长÷ 株距全长株距× 株数株距全长÷ 株数假如在非封闭线路的两端都不要植树 ,那么:株数段数 1 全长÷ 株距 1 全长株距×株数 1 株距全长÷株数 1 2. 封闭线路上的植树问题的数量关系如下:株数段数全长÷ 株距全长株距× 株数株距全长÷ 株数盈亏问题的公式名师归纳总结 盈亏 ÷ 两次安排量之差 参与安排的份数第 5 页,共 7 页大盈小盈 ÷ 两次安排量之差 参与安排的份数大亏小亏 ÷ 两次安排量之差 参与安排的份数- - - - - - -精选学习资料 - - - - - - - - - 学习必备 欢迎下载相遇问题的公式相遇路程速度和× 相遇时间相遇时间相遇路程÷ 速度和速度和相遇路程÷ 相遇时间追及问题的公式追及距离速度差× 追准时间追准时间追及距离÷ 速度差速度差追及距离÷ 追准时间流水问题(或风)顺流速度静水速度水流速度÷ 2 逆流速度静水速度水流速度静水速度顺流速度逆流速度水流速度顺流速度逆流速度÷ 2 浓度问题的公式溶质的重量溶剂的重量溶液的重量溶质的重量÷ 溶液的重量×100% 浓度溶液的重量× 浓度溶质的重量溶质的重量÷ 浓度溶液的重量利润与折扣问题的公式利润售出价成本利润率利润÷ 成本×100%售出价÷ 成本1× 100% 涨跌金额本金× 涨跌百分比折扣实际售价÷ 原售价×100%折扣 1 利息本金× 利率× 时间税后利息本金× 利率× 时间×120% 连续数问题的公式 和 1+2+3+ +(项数 1) ÷ 项数 = 最小数(首项) 和 1+2+3+ +(项数 1) ÷ 项数 = 最大数(末项)总和÷ 项数 =中间数(中项)(首项 +末项)× 项数÷2 = 总和方阵问题的公式实心方阵有以下数量关系:总数 = 外层每边个数× 外层每边个数空心方阵有以下数量关系:外层每边数 = 总数÷4÷ 层数层数工程问题是一种典型的分数应用题;这类应用题的特点是:1.题中不给出工作量的详细数量,而用整体“1” 来表示2.工作效率以单位时间内完成工作总量的几分之几来表示基本数量关系式是:工作量÷ 工作效率 = 工作时间发车问题的公式1. 一般间隔发车问题,用个公式快速作答:汽车间距(汽车速度行人速度)× 相遇大事时间间隔汽车间距名师归纳总结 - - - - - - -第 6 页,共 7 页精选学习资料 - - - - - - - - - 学习必备 欢迎下载汽车间距(汽车速度行人速度)× 追及大事时间间隔汽车间距汽车间距汽车速度× 汽车发车时间间隔2. 求到达目的地后相遇和追及的公共汽车的辆数;标准方法是:画图尽可能多的列个公式结合全程× 结合植树问题数数;牛吃草问题的公式1.设定一头牛一天吃草量为“1”×吃的较少天数)÷(吃的2.草的生长速度(对应的牛头数×吃的较多天数相应的牛头数较多天数吃的较少天数);3.原有草量牛头数×吃的天数草的生长速度×吃的天数; 4.吃的天数原有草量÷(牛头数草的生长速度);5.牛头数原有草量÷吃的天数草的生长速度;储蓄问题的公式每个期数内的利息利润 = × 100% 本金利息 = 本金× 利息× 期数数字问题的公式一般可设个位数字为 a,十位数字为 b,百位数字为 c 十位数字可表示为 10b+a,百位数字可表示为 100c+10b+a 然后抓住数字间或新数、原数之间的关系找等量关系列方程名师归纳总结 - - - - - - -第 7 页,共 7 页