2022年七年级数学第二章知识点及典型习题梳理.docx
名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载复习课题:其次章 整式的加减(小结与回忆)上课老师:韩悦上课班级:七( 1)班上课时间: 20XX年 1 月 17 日1 月 24 日同学们,信任你们已经胜利地完成了上一部分的任务,那么就让我们再接再厉踏上新的征程吧! !其次章 整式的加减( 54 页-76 页)学问点总结定义:由数字或字母的积组成的式子1. 单项式 系数:数字因数次数:全部字母的指数的和定义:几个单项式的和整2. 多项式项:每个单项式常数项:不含字母的项次数:次数最高项的次数式3. 同类项字母相同 相同字母的指数也相同合并同类项系数相加 字母及指数不变整式的去括号假如括号外的因数是正数( +),去括号后,原括号内各项的符号与原加的符号 相同负数( - ),去括号后,原括号内各项的符号与原假如括号外的因数是减步骤的符号 相反去括号合并同类项学问点一:整式 、单项式与多项式的判定母)1、没有加减运算的整式叫做单项式;(数字与字母的积 包括单独的一个数或字细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 1 页,共 5 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载2、几个单项式的和叫做多项式;其中每个单项式叫做多项式的项,不含字母的项叫做常数项;说明: 没有除法运算或虽有除法运算但除式中不含有字母的有理式叫做整式; 、书写含有字母的式子时应留意:(1)当数字与字母相乘时,乘号通常省略不写或简写为“ · 后,如数字是带分数,要化为假分数;” ,且数字在前,字母在( 2)字母与字母相乘时,乘号通常省略不写或简写为“ · ” ,如 a× b 写成 a· b 或 ba;(3)除法运算写成分数形式;(一)单项式 1、都是数字与字母的乘积 2、单项式的数字因数叫做单项式的系数;3、单项式中全部字母的指数和叫做单项式的次数;4、单独一个数或一个字母也是单项式;5、只含有字母因式的单项式的系数是 1 或 1;6、单独的一个数字是单项式,它的系数是它本身;7、单独的一个非零常数的次数是 0;如 5 的次数是 0;8、单项式中只能含有乘法或乘方运算,而不能含有加、减等其他运算;9、单项式的系数包括它前面的符号;10、单项式的系数是带分数时,应化成假分数;11、单项式的系数是1 或 1 时,通常省略数字“1” ;如 k,pq2等;12、单项式的次数仅与字母有关,与单项式的系数无关;如 10 3 无关;9× 103a2b3c 的次数是 6,与 13、圆周率 是常数;(二)多项式1、几个单项式的和叫做多项式;2、多项式中的每一个单项式叫做多项式的项;3、多项式中不含字母的项叫做常数项;4、一个多项式有几项,就叫做几项式;5、多项式的每一项都包括项前面的符号;6、多项式没有系数的概念,但有次数的概念;7、多项式中次数最高的项的次数,叫做这个多项式的次数;要点诠释:( 1)多项式的每一项都包括它前面的符号;如多项式 6x 22x7,它的项是 6x 2,2x,7;(2)多项式 3n 42n 2n1 的项是 3n 4, 2n 2,n,1,其中 3n 4 是四次项, 2n 2是二 次项, n 是一次项, 1 是常数项;(3)多项式的次数不是全部的项的次数之和,而是次数最高项的次数;(4)多项式中含有几项,就是几项式,最高项的次数是几,就是几次式;(5)多项式没有系数的概念,但对多项式中的每一项来说都有系数;(6)多项式的降幂与升幂排列 把一个多项式按某一个字母的指数从大到小的次序排列起来,叫做把这个多项式按这个字母降幂排列;细心整理归纳 精选学习资料 例如,多项式2x35x85x2,我们可以运用交换律,把多项式按其中字母x 的 第 2 页,共 5 页 指数从大到小的次序写成2x35x2 5x8 的形式,这种书写形式就是把多项式按 - - - - - - - - - - - - - - - - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载字母 x 降幂排列;另外,把一个多项式按某一个字母的指数从小到大的次序排列起来,叫做把这个多项式按这个字母升幂排列;例如,多项式 2x 35x85x 2可以改写成 5x 22x 3 的形式,这种书写形式就是把多项式按字母 x 升幂排列;85x留意: (1)利用加法交换律重新排列时,各项应带着它的符号一起移动位置;(2)含有多个字母时,只按给定的字母进行降幂或升幂排列;(三)整式1、单项式和多项式统称为整式;2、单项式或多项式都是整式;3、整式不肯定是单项式;4、整式不肯定是多项式;5、分母中含有字母不是整式;(四)整式的值一般地, 用数值代替整式里的字母,依据整式中的运算关系运算得出的结果,叫做整式的值;要点诠释:1、一个整式的值是由整式中字母的取值而打算的所以整式的值一般不是一个固定的数,它会随着整式中字母取值的变化而变化因此在求整式的值时,必需指明在什么条件下如:对于整式 n 2;当 n 2 时,代数式n2 的值是 0;当 n4 时,代数式n2 的值是 2;2、整式中字母的取值必需确保做到以下两点:使整式有意义,使字母所表示的实 际数量有意义,例如:式子中字母表示长方形的长,那么它必需大于 0;3、求整式的值的一般步骤:假如整式能化简,就先化简;假如不能化简,就由整式的值的概念,需要:一要代入,二要运算求整式的值时,一要弄清晰运算符号,二要留意运算次序在运算时,要留意按整式指明的运算进行;注: (1)整式中的运算符号和详细数字都不能转变;(2)字母在整式中所处的位置必需搞清晰;(3)假如字母取值是分数或负数时,作运算时一般加上小括号,这样不易出错;学问点二:整式的加减(一)同类项、合并同类项 1 同类项:所含字母相同,并且相同字母的指数也分别相等的项叫做同类项;几个常 数项也是同类项;要点诠释:同类项有两个特点,一是所含字母相同;二是相同字母的指数也相同;二者缺一不行;而与系数大小、字母的 先后次序没有关系;简洁地说,就是“ 两相同,两无关” ;另外,常数项都是同类项;2合并同类项:把多项式中的同类项合并成一项,叫做合并同类项;要点诠释:( 1)合并同类项的法就是:字母和字母的指数不变;同类项的系数相加,所得的结果作为合并后所得项的系数,(2)合并同类项的一般步骤:先判定谁与谁是同类项;细心整理归纳 精选学习资料 注:全部的常数项都是同类项,合并时把它们结合在一起,运用有理数的运算法就合并; 第 3 页,共 5 页 - - - - - - - - - - - - - - - - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载利用法就合并同类项;合并同类项时,系数相加,字母部分不变,不能把字母的指数也相加,如 2a 5a 7a 2;假如两个同类项的系数互为相反数,合并同类项后,结果为 0 ;合并同类项时,只能把同类项合并成一项,不是同类项的不能合并,不能合并的项,在每步运算中不要漏掉;写出合并后的结果;注:合并同类项时, 只要多项式中不再有同类项,也可能是多项式;(二)去括号与添括号 1去括号法就:就是最终的结果, 结果可能是单项式,括号前是“ ” 号,把括号和它前面的“ ” 号去掉,括号里的各项都不变符号;括号前是“ ” 号,把括号和它前面的“ ” 号去掉,括号里的各项都转变符号;要点诠释:( 1)括号前面有数字因数时,应利用乘法安排律,先将该数与括号内的各项分别相乘,再去掉括号,以防止发生符号错误;( 2)在去掉括号时 , 括号内的各项或者都要转变符号,或者都不转变符号,而不能只改 变某些项的符号;(3)肯定要留意括号前面的符号,它是去掉括号后,括号内各项是否变号的依据;如括号前面是“ ” 号,去括号经常遗忘转变括号内每一项的符号,显现错误, 或括号前有数字因数, 去括号时没把数字因数与括号内的每一项相乘,括号法就,才能防止出错; 2添括号法就:显现漏乘的现象, 只有严格依据去所添括号前面是“ ” 号,括到括号里的各项都不变符号;所添括号前面是“ ” 号,括到括号里的各项都转变符号要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“ ”号或“ ” 号也是新添的,不是原先多项式的某一项的符号“ 移” 出来的;(2)添括号时,第一要懂得题目的要求,弄清晰括号前是“ ” 号仍是“ ” 号,然 后再依据法就添括号, 特别要留意括号前面是“ ” 号时,括到括号内的各项都要转变符号;(3)把一些项放在带有系数的括号里,每一项都要除以这个系数,如 6a 4b26a÷ 24b÷ 2 23a 2b ;(4)去括号和添括号是两个相反的过程,因此可以相互检验正误;如 a bc 与 ab c ; abc 与 a b c ;(三)整式的加减一般地,几个整式相加减,假如有括号就先去括号,然后再合并同类项;要点诠释:1、整式的加减运算实质是正确地去括号、合并同类项, 以及进行实际背景的加减运算;2、几个多项式相加,可以省略括号,直接写成相加的形式,如 3a 2b 与 2ab 的和 可直接写成 3a 2b2ab 的形式;3、两个多项式相减,被减数可不加括号,但减数肯定要加上括号;如 3a2b 与 2ab 的差可写成 3a2b 2ab 的形式,再去括号进行运算;4、在进行整式加减运算时,有时可把着眼点放在问题的整体上,用整体思想考虑问题,可使运算简化;5、不要漏掉不能合并的项;注:1 查找同类项的过程就是把多项式的项按所含字母相同,并且相同字母的指数也分别 相同进行分类;2 先化简再求值,就是把一个较复杂的多项式转化为一个较简洁的多项式或单项式,再代入求值,表达了转化思想的优越性;细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 4 页,共 5 页 - - - - - - - - - 名师归纳总结 精品学习资料 - - - - - - - - - - - - - - -学习必备 欢迎下载练习题我就不给了,在网上做题也不便利;直接自我完成书上 要求仍是利用好练习本与错题本;发愤早为好,苟晚休嫌迟,最忌不努力,一生都无知;华罗庚74 页-76 页复习题 2 即可,细心整理归纳 精选学习资料 - - - - - - - - - - - - - - - 第 5 页,共 5 页 - - - - - - - - -