欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年圆锥曲线知识点、公式大全、测试题.docx

    • 资源ID:27296568       资源大小:3.47MB        全文页数:19页
    • 资源格式: DOCX        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年圆锥曲线知识点、公式大全、测试题.docx

    精选学习资料 - - - - - - - - - 名师整理 优秀资源圆锥曲线的方程与性质1椭圆(1)椭圆概念平面内与两个定点F、1F的距离的和等于常数2 a (大于|F F2|)的点的轨迹叫做椭圆;这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距; 如 M,为椭圆上任意一点,就有|MF 1|MF2|2 a;椭圆的标准方程为:x2y21(ab0)(焦点在 x 轴上)或y2x21(ab0)(焦点在 y 轴上);a 2b2a2b2注:以上方程中a b的大小ab0,其中b2a22 c;在x2y21和y22 x1两个方程中都有ab0的条件,要分清焦点的位置,只要看x2和2 y的分母的大小;例如椭圆x2y2(1m0a2b2a22 bmnn0, mn)当mn时表示焦点在x轴上的椭圆;当mn时表示焦点在y轴上的椭圆;(2)椭圆的性质范畴:由标准方程 xa 22 b y 22 1 知 | x | a , | y | b ,说明椭圆位于直线 x a , y b 所围成的矩形里;对称性:在曲线方程里,如以 y代替y方程不变,所以如点 , x y 在曲线上时,点 , y 也在曲线上,所以曲线关于 x轴对称,同理,以 x代替x方程不变,就曲线关于 y轴对称;如同时以 x代替x,y代替y方程也不变,就曲线关于原点对称;所以,椭圆关于 x 轴、 y 轴和原点对称;这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;顶点:确定曲线在坐标系中的位置,常需要求出曲线与 x 轴、 y 轴的交点坐标; 在椭圆的标准方程中, 令 x 0,得 y b ,就 B 10, b,B 20, 是椭圆与 y 轴的两个交点;同理令 y 0 得 x a ,即 A 1 a ,0,A a 2 ,0 是椭圆与 x 轴的两个交点;所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点;同时,线段1A A 、B B 1 2分别叫做椭圆的长轴和短轴,它们的长分别为2a 和 2b , a 和 b 分别叫做椭圆的长半轴长和短半轴长;,由椭圆的对称性知: 椭圆的短轴端点到焦点的距离为a ;在Rt OB F中,|OB 2|b,|OF 2|c,|B F 2|a,且|OF22 | |BF2|2|OB2 |2即c2a22 b;离心率:椭圆的焦距与长轴的比 e c叫椭圆的离心率;a c 0, 0 e 1,且 e 越接近 1, c 就越接近 a ,从而 b 就越小,对应的椭圆a越扁;反之, e 越接近于 0 , c 就越接近于 0 ,从而 b 越接近于 a ,这时椭圆越接近于圆;当且仅当 a b 时,c 0,两焦点重合,图形变为圆,方程为x2y22 a;2双曲线(1)双曲线的概念平面上与两点距离的差的肯定值为非零常数的动点轨迹是双曲线(|PF 1|PF 2| 2 a);留意:式中是差的肯定值,在02a|F F 2|条件下;|PF 1|PF 2|2a时为双曲线的一支;|PF2|PF 1|2a时为双曲线的另一支(含F 的一支);当2a|F F 12|时,|PF 1|PF2| 2a表示两条射线;当2a|F F 12|时,|PF 1|PF 2| 2a不表示任何图形;两定点F F叫做双曲线的焦点,|F F 1 2|叫做焦距;椭圆和双曲线比较:定义椭PF 2圆F F 2|双曲线|F F 2|第 1 页,共 10 页|PF 1| 2 2a|PF 1|PF 2| 2 2a方程x2y21x2y21x2y21y2x21a2b2b2a2a2b2a2b2焦点Fc,0F0,cFc,0F0,c名师归纳总结 - - - - - - -精选学习资料 - - - - - - - - - 名师整理 优秀资源留意:如何用方程确定焦点的位置!(2)双曲线的性质范畴:从标准方程x2y21,看出曲线在坐标系中的范畴:双曲线在两条直线xa的外侧;即x2a2,xa即双曲线在两条直线xa的a2b2外侧;对称性:双曲线x2y21关于每个坐标轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线x2y21的对称中心,双曲线的对称中22a2b2ab心叫做双曲线的中心;顶点:双曲线和对称轴的交点叫做双曲线的顶点;在双曲线 x22 y2 21 的方程里,对称轴是 x y轴,所以令 y 0 得 x a,因此双曲线和 x 轴有a b两个交点 A a 0, A 2 a 0, ,他们是双曲线a x 22 b y2 21 的顶点;令 x 0,没有实根,因此双曲线和 y 轴没有交点;1)留意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点),双曲线的顶点分别是实轴的两个端点;2)实轴:线段 A A 2 叫做双曲线的实轴,它的长等于 2 , a a叫做双曲线的实半轴长;虚轴:线段 B B 2 叫做双曲线的虚轴,它的长等于 2 , b b叫做双曲线的虚半轴长;渐近线:留意到开课之初所画的矩形,矩形确定了两条对角线,这两条直线即称为双曲线的渐近线;从图上看,双曲线x2y21的各支向外延长时,与这a2b2两条直线逐步接近;等轴双曲线:1)定义:实轴和虚轴等长的双曲线叫做等轴双曲线;定义式:a b;2)等轴双曲线的性质: (1)渐近线方程为:y x;(2)渐近线相互垂直;留意以上几个性质与定义式彼此等价;亦即如题目中显现上述其一,即可推知双曲线为等轴双曲线,同时其他几个亦成立;3)留意到等轴双曲线的特点a1b,就等轴双曲线可以设为:x2y20 ,当0时交点在x轴,当0时焦点在y轴上;留意x2y21与2 yx2的区分:三个量a b c 中a b 不同(互换) c 相同,仍有焦点所在的坐标轴也变了;1699163抛物线( 1)抛物线的概念平面内与肯定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线定点 F 不在定直线l 上 ;定点 F 叫做抛物线的焦点,定直线l 叫做抛物线的准线;方程y22pxp0叫做抛物线的标准方程;p ,0 ),它的准线方程是xp;留意:它表示的抛物线的焦点在x 轴的正半轴上,焦点坐标是F(22(2)抛物线的性质一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情形,所以抛物线的标准方程仍有其他几种形式:y22px,x22py,x22py.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下表:标准方程y22pxy22px2 x2pyx22pyp0p0p0p0lyyly图形o FxFoxlF ox焦点坐标p,0p,00,p0,p2222准线方程xpxpypyp第 2 页,共 10 页2222名师归纳总结 - - - - - - -精选学习资料 - - - - - - - - - 名师整理 优秀资源范畴 x 0 x 0 y 0 y 0对称性 x轴 x轴 y轴 y轴顶点 0,0 0,0 0,0 0,0离心率 e 1 e 1 e 1 e 1说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;( 3)留意强调 p 的几何意义:是焦点到准线的距离;圆锥曲线公式大全名师归纳总结 - - - - - - -第 3 页,共 10 页精选学习资料 - - - - - - - - - 名师归纳总结 名师整理优秀资源第 4 页,共 10 页- - - - - - -精选学习资料 - - - - - - - - - 名师归纳总结 名师整理优秀资源第 5 页,共 10 页- - - - - - -精选学习资料 - - - - - - - - - 名师归纳总结 名师整理优秀资源第 6 页,共 10 页- - - - - - -精选学习资料 - - - - - - - - - 名师归纳总结 名师整理优秀资源第 7 页,共 10 页- - - - - - -精选学习资料 - - - - - - - - - 名师归纳总结 名师整理优秀资源第 8 页,共 10 页- - - - - - -精选学习资料 - - - - - - - - - 名师归纳总结 名师整理优秀资源第 9 页,共 10 页- - - - - - -精选学习资料 - - - - - - - - - 名师归纳总结 名师整理优秀资源第 10 页,共 10 页- - - - - - -

    注意事项

    本文(2022年圆锥曲线知识点、公式大全、测试题.docx)为本站会员(Che****ry)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开