2018年度全国卷Ⅰ文科数学试卷分析.doc
.*2018年新课标高考文科数学试卷分析一、 题型题量分析全卷包括第卷和第卷两部分.第卷为选择题.第卷为非选择题.考试时间为120分钟,总分为150分.试题分选择题、填空题和解答题.其中,选择题有12个小题,每题5分,共计60分;填空题有4个小题,每题5分,共计20分;解答题有8个题,其中第17题21题各12分,第2224题(各10分)选考一题内容分别为选修44(坐标系与参数方程)、45(不等式选讲),共计70分.全部试题都要求在答题卡上作答。题型、题量同教育部考试中心近几年命制的新高考数学文科卷相同。二、 试题考查内容试题内容与考试要求都与2018年新课程高考考试大纲的考试内容与要求相吻合,考查的知识内容与方法分布与高中数学新课标和考试大纲所规定的相同.三、 试题考查的知识和方法题号主要内容知识与方法1集合集合的交集2复数复数的运算以及模长3统计扇形图的应用4解析几何椭圆的定义以及离心率5立体几何圆柱的表面积求解6函数与导数函数的奇偶性及切线方程7平面向量平面向量的线性运算8三角函数三角恒等变换9立体几何三视图与曲面最短路线的求解10立体几何长方体体积的求解11三角函数三角函数的诱导公式12分段函数分段函数与函数的单调性13复合函数复合函数的求解14线性规划闭合区域的线性规划求解15解析几何直线以及圆的求解16解三角形正、余弦定理解三角形17数列等比数列及其前n项求和18立体几何求证面面垂直问题以及四面体体积的大小19概率统计频率分布直方图20解析几何抛物线的求解21函数解析式、导数、函数单调性、恒成立问题、最大值22平面几何相似三角形、三角形外接圆、平面几何推理证明23坐标系与参数方程圆的极坐标方程、极坐标与直角坐标互化、参数方程运用、两点间距离公式24不等式含绝对值不等式的解法、绝对值的几何意义四、 试题分析2018年全国新课标理科数学试卷注重思想考察本质,风格稳中有变今年河南省使用的全国课标1卷的高考数学试题,依然延续了往年课标卷试题的风格:严格遵循考试说明和新课程标准的要求,以能力立意,在多角度多层次地考查基础知识和基本技能的同时,注重对考生数学思想和学科能力的考查。整个试卷呈“由易到难,循序渐进”的趋势,试题的结构、考点、试题的难易度与去年相比基本保持稳定。一, 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1已知集合,则ABCD解析:集合A中和集合B中含有,所以选A.命题意图:本题考查的是集合的概念,通过考查集合的交集知识,进而考查分析能力。2设,则A0BCD解析:命题意图:本题考查的是复数的概念及运算,以复数为载体,通过分母实数化,考查运算能力。3某地区经过一年的新农村建设,农村的经济收入增加了一倍实现翻番为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例得到如下饼图:则下面结论中不正确的是A新农村建设后,种植收入减少B新农村建设后,其他收入增加了一倍以上C新农村建设后,养殖收入增加了一倍D新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半解析:A选项建设前种植收入为60,建设后收入为74,种植收入增加了,故A错命题意图:本题主要考查扇形图的应用,以图表为载体,考查数据的获取能力与分析能力。4已知椭圆:的一个焦点为,则的离心率为ABCD解析:由焦点为命题意图:本题主要考查椭圆的性质,以椭圆为载体,考查考生的运算分析能力。5已知圆柱的上、下底面的中心分别为,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为ABCD解析:由题意可知圆柱底面半径为,高也为,由圆柱表面积公式可得B选项正确。命题意图:本题主要考查空间几何体的体积,通过还原几何体,求几何体的表面积,考查考生的空间想象能力及运算求解能力。6设函数若为奇函数,则曲线在点处的切线方程为ABCD解析:函数为奇函数,故a=1,由点斜式可得D选项为切线方程。命题意图:本题主要考查切线方程的相关知识,以及函数的奇偶性,考查考生的运算求解能力。7在中,为边上的中线,为的中点,则ABCD解析:命题意图:本题考查了向量的线性运算,考查了考生的运算求解能力。8已知函数,则A的最小正周期为,最大值为3B的最小正周期为,最大值为4C的最小正周期为,最大值为3D的最小正周期为,最大值为4解析:化简原式的命题意图:本题考查了三角函数的性质,考查了考生的运算求解能力。9某圆柱的高为2,底面周长为16,其三视图如右图圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为ABCD2解析:命题意图:本题考查了三视图、最短路径的长度,考查计算能力,空间想象能力,由三视图可知该几何体是圆柱。10在长方体中,与平面所成的角为,则该长方体的体积为ABCD解析:命题意图:本题考查了正方体的体积求解,考查考生的空间想象能力与运算求解能力。11已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有两点,且,则ABCD解析:命题意图:本题考查了三角函数的性质,以三角函数为载体,化简为绝对值问题,考查考生的分析能力与运算求解能力。12设函数,则满足的x的取值范围是ABCD解析:命题意图:本题考查了分段函数的单调性,考查考生的运算求解能力。13已知函数,若,则_解析:命题意图:本题主要考查函数的求值问题,考查学生的运算求解能力。14若满足约束条件,则的最大值为_解析:命题意图:本题主要考查简单的线性规划问题,以不等式组为载体,借助线性规划问题,考查数形结合思想和运算求解能力。15直线与圆交于两点,则_解析:命题意图:本题考查了直线与圆的位置关系,考查学生运算求解能力。16的内角的对边分别为,已知,则的面积为_解析:命题意图:本题考查了解三角形的知识,通过正弦定理和余弦定理综合,进而求出三角形面积,考查考生的数形结合能力及运算求解能力。17(12分)已知数列满足,设(1)求;(2)判断数列是否为等比数列,并说明理由;(3)求的通项公式学,科网解:(1)由条件可得an+1=将n=1代入得,a2=4a1,而a1=1,所以,a2=4将n=2代入得,a3=3a2,所以,a3=12从而b1=1,b2=2,b3=4(2)bn是首项为1,公比为2的等比数列由条件可得,即bn+1=2bn,又b1=1,所以bn是首项为1,公比为2的等比数列(3)由(2)可得,所以an=n2n-1命题意图:本题主要考查等比数列的通项公式,考查考生灵活运用数学知识分析问题与解决问题的能力。第一需要按照数列的性质进行计算,进而得出结果;而后两问则需要活用等比数列的性质,进而求出其通项公式。18(12分)如图,在平行四边形中,以为折痕将折起,使点到达点的位置,且(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积解:(1)由已知可得,=90,又BAAD,所以AB平面ACD又AB平面ABC,所以平面ACD平面ABC(2)由已知可得,DC=CM=AB=3,DA=又,所以作QEAC,垂足为E,则由已知及(1)可得DC平面ABC,所以QE平面ABC,QE=1因此,三棱锥的体积为命题意图:本题以四棱锥为载体考查面面垂直及几何体的体积问题,考查考生的空间想象能力和考生的运算求解能力。第一问按照正常证明垂直的道路求解即可,而第二问则不需要转体,降低了题目难度,但对知识运用的灵活性有着更高的要求。19(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:未使用节水龙头50天的日用水量频数分布表日用水量频数13249265使用了节水龙头50天的日用水量频数分布表日用水量频数151310165(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)解:(1)(2)根据以上数据,该家庭使用节水龙头后50天日用水量小于0.35m3的频率为0.20.1+10.1+2.60.1+20.05=0.48,因此该家庭使用节水龙头后日用水量小于0.35m3的概率的估计值为0.48(3)该家庭未使用节水龙头50天日用水量的平均数为该家庭使用了节水龙头后50天日用水量的平均数为估计使用节水龙头后,一年可节省水命题意图:本题主要考查频率分布直方图,考查考生的阅读能力、信息迁移能力和分析问题、解决问题的能力。第一个问需要补齐频率分布直方图,而后两问则围绕频率分布直方图展开提问,增强了考查的灵活性。20(12分)设抛物线,点,过点的直线与交于,两点(1)当与轴垂直时,求直线的方程;(2)证明:解:(1)当l与x轴垂直时,l的方程为x=2,可得M的坐标为(2,2)或(2,2)所以直线BM的方程为y=或(2)当l与x轴垂直时,AB为MN的垂直平分线,所以ABM=ABN当l与x轴不垂直时,设l的方程为,M(x1,y1),N(x2,y2),则x1>0,x2>0由得ky22y4k=0,可知y1+y2=,y1y2=4直线BM,BN的斜率之和为将,及y1+y2,y1y2的表达式代入式分子,可得所以kBM+kBN=0,可知BM,BN的倾斜角互补,所以ABM+ABN综上,ABM=ABN命题意图:本题主要考查了直线与圆锥曲线的位置关系,考查考生的运算求解能力与探究能力。第一问直接求出直线方程,而第二问是探究性问题,将直线方程与抛物线方程联立,利用根与系数的关系化简求解。21(12分)已知函数(1)设是的极值点求,并求的单调区间;(2)证明:当时,解:(1)f(x)的定义域为,f (x)=aex由题设知,f (2)=0,所以a=从而f(x)=,f (x)=当0<x<2时,f (x)<0;当x>2时,f (x)>0所以f(x)在(0,2)单调递减,在(2,+)单调递增(2)当a时,f(x)设g(x)=,则 当0<x<1时,g(x)<0;当x>1时,g(x)>0所以x=1是g(x)的最小值点故当x>0时,g(x)g(1)=0因此,当时,命题意图:本题考查利用导数研究函数的单调性、极值、最值等,涉及分类讨论思想、方程与函数思想、构造法的应用。22选修44:坐标系与参数方程(10分)在直角坐标系中,曲线的方程为以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)求的直角坐标方程;(2)若与有且仅有三个公共点,求的方程解:(1)由,得的直角坐标方程为(2)由(1)知是圆心为,半径为的圆由题设知,是过点且关于轴对称的两条射线记轴右边的射线为,轴左边的射线为由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点当与只有一个公共点时,到所在直线的距离为,所以,故或经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点当与只有一个公共点时,到所在直线的距离为,所以,故或经检验,当时,与没有公共点;当时,与没有公共点 综上,所求的方程为命题意图:本题考查极坐标方程与直角坐标的互化、参数方程与普通方程的互化、直线和圆的位置关系等。23选修45:不等式选讲(10分)已知(1)当时,求不等式的解集;(2)若时不等式成立,求的取值范围解:(1)当时,即故不等式的解集为(2)当时成立等价于当时成立若,则当时;若,的解集为,所以,故综上,的取值范围为命题意图:本题考查绝对值不等式的恒成立问题,第一问可通过数形结合法或绝对值不等式的性质进行解答,第二问则对a进行分类讨论,进而求解。