分解因式全部方法.doc
+分解因式全部方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。 注意三原则 1 分解要彻底 2 最后结果只有小括号 3 最后结果中多项式首项系数为正(例如:-3x2+x=-x(3x-1)) 编辑本段基本方法 提公因式法 各项都含有的公共的因式叫做这个多项式各项的公因式。 如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。 具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。 如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。提出“-”号时,多项式的各项都要变号。 口诀:找准公因式,一次要提净;全家都搬走,留1把家守;提负要变号,变形看奇偶。 例如:-am+bm+cm=-m(a-b-c); a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。 注意:把2a2+1/2变成2(a2+1/4)不叫提公因式 公式法 如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。 平方差公式:a2-b2=(a+b)(a-b); 完全平方公式:a22abb2(ab)2; 注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍。 立方和公式:a3+b3=(a+b)(a2-ab+b2); 立方差公式:a3-b3=(a-b)(a2+ab+b2); 完全立方公式:a33a2b3ab2b3=(ab)3 公式:a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca) 例如:a2 +4ab+4b2 =(a+2b)2。 (3)分解因式技巧 1.分解因式与整式乘法是互为逆变形。 2.分解因式技巧掌握: 等式左边必须是多项式; 分解因式的结果必须是以乘积的形式表示; 每个因式必须是整式,且每个因式的次数都必须低于原来多项式的次数; 分解因式必须分解到每个多项式因式都不能再分解为止。 注:分解因式前先要找到公因式,在确定公因式前,应从系数和因式两个方面考虑。 3.提公因式法基本步骤: (1)找出公因式; (2)提公因式并确定另一个因式: 第一步找公因式可按照确定公因式的方法先确定系数在确定字母; 第二步提公因式并确定另一个因式,注意要确定另一个因式,可用原多项式除以公因式,所得的商即是提公因式后剩下的一个因式,也可用公因式分别除去原多项式的每一项,求的剩下的另一个因式; 提完公因式后,另一因式的项数与原多项式的项数相同。 编辑本段竞赛用到的方法 分组分解法 分组分解是解方程的一种简洁的方法,我们来学习这个知识。 能分组分解的方程有四项或大于四项,一般的分组分解有两种形式:二二分法,三一分法。 比如: ax+ay+bx+by =a(x+y)+b(x+y) =(a+b)(x+y) 我们把ax和ay分一组,bx和by分一组,利用乘法分配律,两两相配,立即解除了困难。 同样,这道题也可以这样做。 ax+ay+bx+by =x(a+b)+y(a+b) =(a+b)(x+y) 几道例题: 1. 5ax+5bx+3ay+3by 解法:=5x(a+b)+3y(a+b) =(5x+3y)(a+b) 说明:系数不一样一样可以做分组分解,和上面一样,把5ax和5bx看成整体,把3ay和3by看成一个整体,利用乘法分配律轻松解出。 2. x3-x2+x-1 解法:=(x3-x2)+(x-1) =x2(x-1)+ (x-1) =(x-1)(x2+1) 利用二二分法,提公因式法提出x2,然后相合轻松解决。 3. x2-x-y2-y 解法:=(x2-y2)-(x+y) =(x+y)(x-y)-(x+y) =(x+y)(x-y-1) 利用二二分法,再利用公式法a2-b2=(a+b)(a-b),然后相合解决。 十字相乘法 这种方法有两种情况。 x2+(p+q)x+pq型的式子的因式分解 这类二次三项式的特点是:二次项的系数是1;常数项是两个数的积;一次项系数是常数项的两个因数的和。因此,可以直接将某些二次项的系数是1的二次三项式因式分解:x2+(p+q)x+pq=(x+p)(x+q) kx2+mx+n型的式子的因式分解 如果有k=ac,n=bd,且有ad+bc=m时,那么kx2+mx+n=(ax+b)(cx+d) 图示如下: c d 例如:因为 1 -3 7 2 -37=-21,12=2,且2-21=-19, 所以7x2-19x-6=(7x+2)(x-3) 十字相乘法口诀:首尾分解,交叉相乘,求和凑中 拆项、添项法 这种方法指把多项式的某一项拆开或填补上互为相反数的两项(或几项),使原式适合于提公因式法、运用公式法或分组分解法进行分解。要注意,必须在与原多项式相等的原则下进行变形。 例如:bc(b+c)+ca(c-a)-ab(a+b) =bc(c-a+a+b)+ca(c-a)-ab(a+b) =bc(c-a)+bc(a+b)+ca(c-a)-ab(a+b) =bc(c-a)+ca(c-a)+bc(a+b)-ab(a+b) =(bc+ca)(c-a)+(bc-ab)(a+b) =c(c-a)(b+a)+b(a+b)(c-a) =(c+b)(c-a)(a+b) 配方法 对于某些不能利用公式法的多项式,可以将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解,这种方法叫配方法。属于拆项、补项法的一种特殊情况。也要注意必须在与原多项式相等的原则下进行变形。 例如:x+3x-40 =x+3x+2.25-42.25 =(x+1.5)-(6.5) =(x+8)(x-5) 应用因式定理 对于多项式f(x)=0,如果f(a)=0,那么f(x)必含有因式x-a 例如:f(x)=x+5x+6,f(-2)=0,则可确定x+2是x+5x+6的一个因式。(事实上,x+5x+6=(x+2)(x+3) 注意:1、对于系数全部是整数的多项式,若X=q/p(p,q为互质整数时)该多项式值为零,则q为常数项约数,p最高次项系数约数; 2、对于多项式f(a)=0,b为最高次项系数,c为常数项,则有a为c/b约数 换元法 有时在分解因式时,可以选择多项式中的相同的部分换成另一个未知数,然后进行因式分解,最后再转换回来,这种方法叫做换元法。 注意:换元后勿忘还元. 例如在分解(x+x+1)(x+x+2)-12时,可以令y=x+x,则 原式=(y+1)(y+2)-12 =y+3y+2-12=y+3y-10 =(y+5)(y-2) =(x+x+5)(x+x-2) =(x+x+5)(x+2)(x-1) 也可以参看右图。 求根法 令多项式f(x)=0,求出其根为x1,x2,x3,xn,则该多项式可分解为f(x)=(x-x1)(x-x2)(x-x3)(x-xn) 例如在分解2x4+7x3-2x2-13x+6时,令2x4 +7x3-2x2-13x+6=0, 则通过综合除法可知,该方程的根为0.5 ,-3,-2,1 所以2x4+7x3-2x2-13x+6=(2x-1)(x+3)(x+2)(x-1) 图象法 令y=f(x),做出函数y=f(x)的图象,找到函数图像与X轴的交点x1 ,x2 ,x3 ,xn ,则多项式可因式分解为f(x)= f(x)=(x-x1)(x-x2)(x-x3)(x-xn) 与方法相比,能避开解方程的繁琐,但是不够准确。 例如在分解x3 +2x2-5x-6时,可以令y=x3; +2x2 -5x-6. 作出其图像,与x轴交点为-3,-1,2 则x3+2x2-5x-6=(x+1)(x+3)(x-2) 主元法 先选定一个字母为主元,然后把各项按这个字母次数从高到低排列,再进行因式分解。 特殊值法 将2或10代入x,求出数p,将数p分解质因数,将质因数适当的组合,并将组合后的每一个因数写成2或10的和与差的形式,将2或10还原成x,即得因式分解式。 例如在分解x3+9x2+23x+15时,令x=2,则 x3 +9x2+23x+15=8+36+46+15=105, 将105分解成3个质因数的积,即105=357 注意到多项式中最高项的系数为1,而3、5、7分别为x+1,x+3,x+5,在x=2时的值, 则x3+9x2+23x+15可能等于(x+1)(x+3)(x+5),验证后的确如此。 待定系数法 首先判断出分解因式的形式,然后设出相应整式的字母系数,求出字母系数,从而把多项式因式分解。 例如在分解x4-x3-5x2-6x-4时,由分析可知:这个多项式没有一次因式,因而只能分解为两个二次因式。 于是设x4-x3-5x2-6x-4=(x2+ax+b)(x2+cx+d) =x4+(a+c)x3+(ac+b+d)x2+(ad+bc)x+bd 由此可得a+c=-1, ac+b+d=-5, ad+bc=-6, bd=-4 解得a=1,b=1,c=-2,d=-4 则x4-x3-5x2-6x-4=(x2+x+1)(x2-2x-4) 也可以参看右图。 双十字相乘法 双十字相乘法属于因式分解的一类,类似于十字相乘法。 双十字相乘法就是二元二次六项式,启始的式子如下: ax2+bxy+cy2+dx+ey+f x、y为未知数,其余都是常数 用一道例题来说明如何使用。 例:分解因式:x2+5xy+6y2+8x+18y+12 分析:这是一个二次六项式,可考虑使用双十字相乘法进行因式分解。 解:图如下,把所有的数字交叉相连即可 x 2y 2 x 3y 6 原式=(x+2y+2)(x+3y+6) 双十字相乘法其步骤为: 先用十字相乘法分解2次项,如十字相乘图中x2+5xy+6y2=(x+2y)(x+3y); 先依一个字母(如y)的一次系数分数常数项。如十字相乘图中6y+18y+12=(2y+2)(3y+6); 再按另一个字母(如x)的一次系数进行检验,如十字相乘图,这一步不能省,否则容易出错。 编辑本段多项式因式分解的一般步骤: 如果多项式的各项有公因式,那么先提公因式; 如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解; 如果用上述方法不能分解,那么可以尝试用分组、拆项、补项法来分解; 分解因式,必须进行到每一个多项式因式都不能再分解为止。 也可以用一句话来概括:“先看有无公因式,再看能否套公式。十字相乘试一试,分组分解要合适。” 几道例题 1分解因式(1+y)2-2x2(1+y2)+x4(1-y)2 解:原式=(1+y)2+2(1+y)x2(1-y)+x4(1-y)2-2(1+y)x2(1-y)-2x2(1+y2)(补项) =(1+y)+x2(1-y)2-2(1+y)x2(1-y)-2x2(1+y2)(完全平方) =(1+y)+x2(1-y)2-(2x)2 =(1+y)+x2(1-y)+2x(1+y)+x2(1-y)-2x =(x2-x2y+2x+y+1)(x2-x2y-2x+y+1) =(x+1)2-y(x2-1)(x-1)2-y(x2-1) =(x+1)(x+1-xy+y)(x-1)(x-1-xy-y) 2求证:对于任何实数x,y,下式的值都不会为33: x5+3x4y-5x3y2-15x2y3+4xy4+12y5 解:原式=(x5+3x4y)-(5x3y2+15x2y3)+(4xy4+12y5) =x4(x+3y)-5x2y2(x+3y)+4y4(x+3y) =(x+3y)(x4-5x2y2+4y4) =(x+3y)(x2-4y2)(x2-y2) =(x+3y)(x+y)(x-y)(x+2y)(x-2y) (分解因式的过程也可以参看右图。) 当y=0时,原式=x5不等于33;当y不等于0时,x+3y,x+y,x-y,x+2y,x-2y互不相同,而33不能分成四个以上不同因数的积,所以原命题成立。 3.ABC的三边a、b、c有如下关系式:-c2+a2+2ab-2bc=0,求证:这个三角形是等腰三角形。 分析:此题实质上是对关系式的等号左边的多项式进行因式分解。 证明:-c2+a2+2ab-2bc=0, (a+c)(a-c)+2b(a-c)=0 (a-c)(a+2b+c)=0 a、b、c是ABC的三条边, a2bc0 ac0, 即ac,ABC为等腰三角形。 4把-12x2nyn+18x(n+2)y(n+1)-6xny(n-1)分解因式。 解:-12x2nyn+18x(n+2)y(n+1)-6xny(n-1) =-6xny(n-1)(2xny-3x2y2+1) 编辑本段因式分解四个注意: 因式分解中的四个注意,可用四句话概括如下:首项有负常提负,各项有“公”先提“公”,某项提出莫漏1,括号里面分到“底”。 现举下例 可供参考 例1 把a2b22ab4分解因式。 解:a2b22ab4(a22abb24)(ab2)(ab2) 这里的“负”,指“负号”。如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。防止学生出现诸如9x24y2(3x)2(2y)2(3x2y)(3x2y)(3x2y)(3x2y)的错误 例2把12x2nyn18xn2yn16xnyn1分解因式。解:12x2nyn18xn2yn16xnyn16xnyn1(2xny3x2y21) 这里的“公”指“公因式”。如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;这里的“1”,是指多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1。 分解因式,必须进行到每一个多项式因式都不能再分解为止。即分解到底,不能半途而废的意思。其中包含提公因式要一次性提“干净”,不留“尾巴”,并使每一个括号内的多项式都不能再分解。防止学生出现诸如4x4y25x2y29y2y2(4x45x29)y2(x21)(4x29)的错误。 考试时应注意: 在没有说明化到实数时,一般只化到有理数就够了 由此看来,因式分解中的四个注意贯穿于因式分解的四种基本方法之中,与因式分解的四个步骤或说一般思考顺序的四句话:“先看有无公因式,再看能否套公式,十字相乘试一试,分组分解要合适”是一脉相承的。 编辑本段因式分解的应用 1、 应用于多项式除法。 2、 应用于高次方程的求根。 3、 应用于分式的运算。