欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    圆知识材料点学习总结及其归纳.doc

    • 资源ID:2765870       资源大小:100.02KB        全文页数:8页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    圆知识材料点学习总结及其归纳.doc

    *第一讲 圆的方程宋体三号加粗一、知识清单一级标题宋体四号加粗(一)圆的定义及方程二级标题宋体小四加粗定义平面内与定点的距离等于定长的点的集合(轨迹)正文宋体五号标准方程(xa)2(yb)2r2(r>0)圆心:(a,b),半径:r一般方程x2y2DxEyF0(D2E24F>0)圆心:,半径:1、圆的标准方程与一般方程的互化三级标题宋体五号加粗(1)将圆的标准方程 (xa)2(yb)2r2 展开并整理得x2y22ax2bya2b2r20,取D2a,E2b,Fa2b2r2,得x2y2DxEyF0.(2)将圆的一般方程x2y2DxEyF0通过配方后得到的方程为:(x)2(y)2当D2E24F>0时,该方程表示以(,)为圆心,为半径的圆;当D2E24F0时,方程只有实数解x,y,即只表示一个点(,);当D2E24F<0时,方程没有实数解,因而它不表示任何图形2、圆的一般方程的特征是:x2和y2项的系数 都为1 ,没有 xy 的二次项.3、圆的一般方程中有三个待定的系数D、E、F,因此只要求出这三个系数,圆的方程就确定了(二)点与圆的位置关系点M(x0,y0)与圆(xa)2(yb)2r2的位置关系:(1)若M(x0,y0)在圆外,则(x0a)2(y0b)2>r2.(2)若M(x0,y0)在圆上,则(x0a)2(y0b)2r2.(3)若M(x0,y0)在圆内,则(x0a)2(y0b)2<r2.本处标题级数错误,应为1、2、3三级标题(三)直线与圆的位置关系 方法一:方法二:(四)圆与圆的位置关系1 外离2外切3相交4内切5内含(五)圆的参数方程(六)温馨提示1、方程Ax2BxyCy2DxEyF0表示圆的条件是:(1)B0; (2)AC0; (3)D2E24AF0.2、求圆的方程时,要注意应用圆的几何性质简化运算(1)圆心在过切点且与切线垂直的直线上(2)圆心在任一弦的中垂线上(3)两圆内切或外切时,切点与两圆圆心三点共线3、中点坐标公式:已知平面直角坐标系中的两点A(x1,y1),B(x2,y2),点M(x,y)是线段AB的中点,则x ,y .二、典例归纳考点一:有关圆的标准方程的求法宋体小四加粗【例1】注意例题符号使用 圆的圆心是 ,半径是 .【例2】 点(1,1)在圆(xa)2(ya)24内,则实数a的取值范围是()A(1,1) B(0,1)C(,1)(1,) D(1,)【例3】 圆心在y轴上,半径为1,且过点(1,2)的圆的方程为()Ax2(y2)21 Bx2(y2)21C(x1)2(y3)21 Dx2(y3)21【例4】 圆(x2)2y25关于原点P(0,0)对称的圆的方程为()A(x2)2y25Bx2(y2)25C(x2)2(y2)25 Dx2(y2)25【变式1】已知圆的方程为,则圆心坐标为 【变式2】已知圆C与圆关于直线 对称,则圆C的方程为 【变式3】 若圆C的半径为1,圆心在第一象限,且与直线4x3y0和x轴都相切,则该圆的标准方程是()A(x3)221 B(x2)2(y1)21C(x1)2(y3)21 D.2(y1)21【变式4】已知的顶点坐标分别是,求外接圆的方程.方法总结:宋体五号加粗1利用待定系数法求圆的方程关键是建立关于a,b,r的方程组2利用圆的几何性质求方程可直接求出圆心坐标和半径,进而写出方程,体现了数形结合思想的运用考点二、有关圆的一般方程的求法【例1】 若方程x2y24mx2y5m0表示圆,则的取值范围是()A .m1 Bm或m1 Cm Dm1【例2】 将圆x2y22x4y10平分的直线是()Axy10 Bxy30 Cxy10 Dxy30【例3】 圆x22xy230的圆心到直线xy30的距离为_【变式1】 已知点是圆上任意一点,P点关于直线的对称点也在圆C上,则实数= 【变式2】 已知一个圆经过点、,且圆心在上,求圆的方程.【变式3】 平面直角坐标系中有四点,这四点能否在同一个圆上?为什么?【变式4】 如果三角形三个顶点分别是O(0,0),A(0,15),B(8,0),则它的内切圆方程为_方法总结:1利用待定系数法求圆的方程关键是建立关于D,E,F的方程组2熟练掌握圆的一般方程向标准方程的转化 考点三、与圆有关的轨迹问题【例1】 动点P到点A(8,0)的距离是到点B(2,0)的距离的2倍,则动点P的轨迹方程为()Ax2y232Bx2y216C(x1)2y216 Dx2(y1)216【例2】 方程表示的曲线是( )A. 一条射线 B. 一个圆 C. 两条射线 D. 半个圆【例3】 在中,若点的坐标分别是(-2,0)和(2,0),中线AD的长度是3,则点A的轨迹方程是( ) A. B. C. D. 【例4】 已知一曲线是与两个定点O(0,0),A(3,0)距离的比为的点的轨迹求这个曲线的方程,并画出曲线【变式1】 方程所表示的曲线是( )A. 一个圆 B. 两个圆 C. 一个半圆 D. 两个半圆【变式2】 动点P到点A(8,0)的距离是到点B(2,0)的距离的2倍,则动点P的轨迹方程为()Ax2y232Bx2y216C(x1)2y216 Dx2(y1)216【变式3】 如右图,过点M(6,0)作圆C:x2y26x4y90的割线,交圆C于A、B两点,求线段AB的中点P的轨迹【变式4】 如图,已知点A(1,0)与点B(1,0),C是圆x2y21上的动点,连接BC并延长至D,使得|CD|BC|,求AC与OD的交点P的轨迹方程方法总结:求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:(1)直接法:根据题目条件,建立坐标系,设出动点坐标,找出动点满足的条件,然后化简(2)定义法:根据直线、圆等定义列方程(3)几何法:利用圆与圆的几何性质列方程(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等考点四:与圆有关的最值问题【例1】 已知圆x2y22x4ya0关于直线y2xb成轴对称,则ab的取值范围是_【例2】 已知x,y满足x2y21,则的最小值为_【例3】 已知点M是直线3x4y20上的动点,点N为圆(x1)2(y1)21上的动点,则|MN|的最小值是()A. B1 C. D.【例4】已知实数x,y满足(x2)2(y1)21则2xy的最大值为_,最小值为_【变式1】 P(x,y)在圆C:(x1)2(y1)21上移动,则x2y2的最小值为_【变式2】 由直线yx2上的点P向圆C:(x4)2(y2)21引切线PT(T为切点),当|PT|最小时,点P的坐标是()A(1,1) B(0,2) C(2,0) D(1,3)【变式3】 已知两点A(2,0),B(0,2),点C是圆x2y22x0上任意一点,则ABC面积的最小值是_【变式4】已知圆M过两点C(1,1),D(1,1),且圆心M在xy20上(1)求圆M的方程;(2)设P是直线3x4y80上的动点,PA、PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值方法总结:解决与圆有关的最值问题的常用方法(1)形如u的最值问题,可转化为定点(a,b)与圆上的动点(x,y)的斜率的最值问题(2) 形如taxby的最值问题,可转化为动直线的截距的最值问题;(3)形如(xa)2(yb)2的最值问题,可转化为动点到定点的距离的最值问题(4)一条直线与圆相离,在圆上找一点到直线的最大(小)值: (其中d为圆心到直线的距离)

    注意事项

    本文(圆知识材料点学习总结及其归纳.doc)为本站会员(一***)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开