欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    新课标高中数学人教A版必修一 3.2.2几类不同增长的函数模型 教案.doc

    • 资源ID:27735099       资源大小:561.71KB        全文页数:6页
    • 资源格式: DOC        下载积分:4金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    新课标高中数学人教A版必修一 3.2.2几类不同增长的函数模型 教案.doc

    3.2.2 几类不同增长的函数模型(一)教学目标1知识与技能利用函数增长的快慢一般规律,借助函数模型,研究解决实际问题,培养数学的应用意识.2进程与方法在实例分析、解决的过程中,体会函数增长快慢的实际意义,从而提高学生应用数学解决实际问题的能力.3情感、态度与价值观在实际问题求解的过程中,享受数学为人们的生产和生活服务的乐趣,激发学生学习数学知识的兴趣.(二)教学重点与难点重点:应用数学理论解决实际问题的兴趣培养和能力提升难点:函数建模及应用函数探求问题的能力培养.(三)教学方法尝试指导与合作交流相结合,学生自主学习和老师引导相结合.解决实际问题范例,培养学生利用函数增长快慢的数学知识对实际问题进行探究和决策.(四)教学过程教学环节教学内容师生互动设计意图回顾复习引入深题增函数的增长快慢比较方法:利用列表与图象,借助二分法求根,探究快慢相应区间获得一般结论. 师:幂函数、指数函数、对数函数的增长快慢一般性规律.生:回顾总结,口述回答.以旧引新导入课题实例分析例1 假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天回报比前一天翻一番.请问,你会选择哪种投资方案?例2 某公司为了实现1000万元利润的目标,准备制定一个激励销售人员的奖励方案:在销售利润达到10万元时,按销售利润进行奖励,且奖金y(单位:万元)随销售利润x(单位:万元)的增加而增加,但奖金总数不超过5万元,同时奖金不超过利润的25%.现有三个奖励模型:y = 0.25x,y = log7x + 1,y = 1.002x,其中哪个模型能符合公司的要求?师生合作探究解答过程例1 解答:设第x天所得回报是y元,则方案一可以用函数y = 40 (xN*)进行描述;方案二可以用函数y = 10x(xN*)进行描述;方案三可以用函数y = 0.4×2x1(xN*)进行描述.三种方案所得回报的增长情况x/天方案一y/元增加量/元140240034004400540064007400840094001040030400x/天方案二y/元增加量/元110220103301044010550106601077010880109901010100103030010x/天方案三y/元增加量/元10.420.80.431.60.843.21.656.43.2612.86.4725.612.8851.225.69102.451.210204.8102.430214748364.8107374182.4再作三个函数的图象在第13天,方案一最多;在第4天,方案一和方案二一样多,方案三最少;在第58天,方案二最多;第9天开始,方案三比其他两个方案所得回报多得多,到第30天,所得回报已超过2亿元.例2 解答:作出函数y=5,y=0.25x,y=log7x +1,y=1.002x的图象.观察图象发现,在区间10,1000上,模型y=0.25x,y=1.002x的图象都有一部分在直线y=5的上方,只有模型y=log7x+1的图象始终在y=5的下方,这说明只有按模型y=log7x+1进行奖励时才符合公司的要求.首先计算哪个模型的奖金总数不超过5万.对于模型y=0.25x,它在区间10,1000上递增,而且当x=20时,y=5,因此,当x20时,y5,所以该模型不符合要求;对于模型y=log7x+1,它在区间10,1000上递增,而且当x=1000时,y=log71000+14.555,所以它符合奖金总数不超过5万元的要求.再计算按模型y=log7x+1奖励时,奖金是否不超过利润的25%,即当x10,1000时,是否有成立.令f(x)=log7x+1 0.25x,x10,1000 将实际问题转化为数学问题,利用图象、表格及恰当的推理,应用不同函数的增长快慢解决实际应用问题.巩固练习1四个变量y1,y2,y3,y4随变量x变化的数据如下表x051015y151305051130y2594.4781785.233733y35305580y452.31071.42951.1407x202530y1200531304505y26.37×1051.2×1072.28×108y3105130155y41.04611.01511.005关于x呈指数型函数变化的变量是 .2某种计算机病毒是通过电子邮件进行传播的,如果某台计算机感染上这种病毒,那么它就会在下一轮病毒发作时传播一次病毒,并感染其他20台未感染病毒的计算机.现有10台计算机被第1轮病毒感染,问被第5轮病毒感染的计算机有多少台?1解:y22解:设第1轮病毒发作时有a1=10台被感染,第2轮,第3轮依次有a2台,a3台被感染,依题意有a5=10×204=160.答:在第5轮病毒发作时会有160万台被感染.动手尝试提升解题能力归纳总结2中学数学建模的主要步骤(1)理解问题:阅读理解,读懂文字叙述,认真审题,理解实际背景.弄清楚问题的实际背景和意义,设法用数学语言来描述问题.(2)简化假设:理解所给的实际问题之后,领悟背景中反映的实质,需要对问题作必要的简化,有时要给出一些恰当的假设,精选问题中关键或主要的变量.(3)数学建模:把握新信息,勇于探索,善于联想,灵活化归,根据题意建立变量或参数间的数学关系,实现实际问题数学化,引进数学符号,构建数学模型,常用的数学模型有方程、不等式、函数.(4)求解模型:以所学的数学性质为工具对建立的数学模型进行求解.(5)检验模型:将所求的结果代回模型之中检验,对模拟的结果与实际情形比较,以确定模型的有效性,如果不满意,要考虑重新建模.(6)评价与应用:如果模型与实际情形比较吻合,要对计算的结果作出解释并给出其实际意义,最后对所建立的模型给出运用范围.如果模型与实际问题有较大出入,则要对模型改进并重复上述步骤.师生合作 反思归纳总结完善生:通过独立思考和必要的交流,分析归纳例1、例2的解题过程,简述建模的主要步骤.师:点评、总理学生的回答,然后完善归纳步骤.师生合作:结合上一课时总结函数增长快慢在实际应用问题中的应用体会.培养整理知识的学习品质.通过知识整合培养数学应用能力.课后练习3.2 第二课时 习案学生独立完成强化基础提高能力备选例题例1 有一批影碟机(VCD)原销售价为每台800元,在甲、乙两家电商场均有销售. 甲商场用如下的方法促销,买一台单价为780元,买二台单价为760元,依次类推,每多买一台单价均减少20元,但每台最低不低于440元;乙商场一律按原价的75%销售,某单位需购买一批此类影碟机,问去哪家商场购买花费最小.【解析】设单位购买x台影碟机,在甲商场购买,每台的单价为800 20x,则总费用在乙商场购买,费用y = 600x.(1)当0x10时,(800x 20x2)600x 购买影碟机低于10台,在乙商场购买.(2)当x = 10时,(800x 20x2) = 600x 购买10台影碟机,在甲商场或在乙商场费用一样.(3)当10x18时,(800x 20x2)600x 购买影碟机多于10台且不多于18台,在甲商场购买.(4)当x18时,600x440x 购买影碟机多于18台,在甲商场购买.答:若购买小于10台,去乙商场购买;若购买10台,在甲商场或在乙商场费用一样多;若购买多于10台,在甲商场购买.【评析】实际应用问题求解,理解题意建立模型是关键,建好模型后实际问题使自然转化为数学问题.例2 某皮鞋厂今年1月份开始投产,并且前4个月的产量分别为1万双,1.2万双,1.3万双,1.37万双. 由于产品质量好,款式新颖,前几个月的销售情况良好.为了推销员在推销产品时,接受定单不至于过多或过少,需要估计以后几个月的产量. 厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程. 厂里也暂时不准备增加设备和工人. 假如你是厂长,就月份x,产量为y给出四种函数模型:y = ax + b,y = ax2 + bx + c,y = a+ b,y = abx + c,你将利用哪一种模型去估算以后几个月的产量?【解析】本题是通过数据验证,确定系数,然后分析确定函数变化情况,最终找出与实际最接近的函数模型.由题意知A(1,1),B(2,1.2),C(3,1.3),D(4,1.37).(1)设模拟函数为y=ax+b,将B、C两点的坐标代入函数式,有,解得所以得y=0.1x+1.因此此法的结论是:在不增加工人和设备的条件下,产量会月月上升1000双,这是不太可能的.(2)设y = ax2 + bx + c,将A、B、C三点代入,有,解得,所以y= 0.05x2+0.35x+0.7.因此由此法计算4月份产量为1.3万双,比实际产量少700双,而且,由二次函数性质可知,产量自4月份开始将月月下降(图象开口向下,对称轴x=3.5),不合实际.(3)设y=+b,将A,B两点的坐标代入,有,解得,所以y=.因此把x = 3和4代入,分别得到y=1.35和1.48,与实际产量差距较大.(4)设y = abx + c,将A,B,C三点的坐标代入,得,解得,所以y= 0.8×(0.5)x+1.4.因此把x= 4代入得y= 0.8×0.54+1.4=1.35.比较上述四个模拟函数的优劣,既要考虑到误差最小,又要考虑生产的实际,比如增产的趋势和可能性. 经过筛选,以指数函数模拟为最佳,一是误差小,二是由于新建厂,开始随工人技术、管理效益逐渐提高,一段时间内产量会明显上升,但过一段时间之后,如果不更新设备,产量必然趋于稳定,而指数函数模拟恰好反映了这种趋势.因此,选用y= 0.8×0.54+1.4模拟比较接近客观实际.【评析】本题是对数据进行函数模拟,选择最符合的模拟函数.一般思路要先画出散点图,然后作出模拟函数的图象,选择适合的几种函数类型后,再加以验证.函数模型的建立是最大的难点,另外运算量较大,必须借助计算机进行数据处理,函数模型的可靠性与合理性既需要数据检验,又必须与实际结合起来.

    注意事项

    本文(新课标高中数学人教A版必修一 3.2.2几类不同增长的函数模型 教案.doc)为本站会员(模**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开