欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    文科圆锥曲线主题材料练习提高及其答案解析.doc

    • 资源ID:2775287       资源大小:649.22KB        全文页数:8页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    文科圆锥曲线主题材料练习提高及其答案解析.doc

    文科圆锥曲线1.设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为( ) 【答案】C【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.【解析】是底角为的等腰三角形,=,=,2.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为( ) 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题.【解析】由题设知抛物线的准线为:,设等轴双曲线方程为:,将代入等轴双曲线方程解得=,=,=,解得=2,的实轴长为4,故选C.3.已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为 (A) (B) (C)(D)考点:圆锥曲线的性质解析:由双曲线离心率为2且双曲线中a,b,c的关系可知,此题应注意C2的焦点在y轴上,即(0,p/2)到直线的距离为2,可知p=8或数形结合,利用直角三角形求解。4.椭圆的中心在原点,焦距为,一条准线为,则该椭圆的方程为(A) (B) (C) (D)【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,从而得到椭圆的方程。【解析】因为,由一条准线方程为可得该椭圆的焦点在轴上县,所以。故选答案C5.已知、为双曲线的左、右焦点,点在上,则(A) (B) (C) (D)【命题意图】本试题主要考查了双曲线的定义的运用和性质的运用,以及余弦定理的运用。首先运用定义得到两个焦半径的值,然后结合三角形中的余弦定理求解即可。【解析】解:由题意可知,设,则,故,利用余弦定理可得。6. 如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点。若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A.3 B.2 C. D. 【命题意图】本题主要考查了椭圆和双曲线的方程和性质,通过对两者公交点求解离心率的关系.【解析】设椭圆的长轴为2a,双曲线的长轴为,由M,O,N将椭圆长轴四等分,则,即,又因为双曲线与椭圆有公共焦点,设焦距均为c,则双曲线的离心率为,.7.已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。若点到该抛物线焦点的距离为,则( )A、 B、 C、 D、 解析设抛物线方程为y2=2px(p>0),则焦点坐标为(),准线方程为x=,点评本题旨在考查抛物线的定义: |MF|=d,(M为抛物线上任意一点,F为抛物线的焦点,d为点M到准线的距离).8.对于常数、,“”是“方程的曲线是椭圆”的( )A、充分不必要条件 B、必要不充分条件 C、充分必要条件 D、既不充分也不必要条件【答案】B.【解析】方程的曲线表示椭圆,常数常数的取值为所以,由得不到程的曲线表示椭圆,因而不充分;反过来,根据该曲线表示椭圆,能推出,【点评】本题主要考查充分条件和必要条件、充要条件、椭圆的标准方程的理解.根据方程的组成特征,可以知道常数的取值情况.属于中档题.9.椭圆的左、右顶点分别是A,B,左、右焦点分别是F1,F2。若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为A. B. C. D. 【解析】本题着重考查等比中项的性质,以及椭圆的离心率等几何性质,同时考查了函数与方程,转化与化归思想.利用椭圆及等比数列的性质解题.由椭圆的性质可知:,.又已知,成等比数列,故,即,则.故.即椭圆的离心率为.【点评】求双曲线的离心率一般是通过已知条件建立有关的方程,然后化为有关的齐次式方程,进而转化为只含有离心率的方程,从而求解方程即可. 体现考纲中要求掌握椭圆的基本性质.来年需要注意椭圆的长轴,短轴长及其标准方程的求解等.10.已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为A-=1 B.-=1 C.-=1 D.-=1【解析】设双曲线C :-=1的半焦距为,则.又C 的渐近线为,点P (2,1)在C 的渐近线上,即.又,C的方程为-=1.【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型.11.已知双曲线-=1的右焦点为(3,0),则该双曲线的离心率等于A B C D 分析:本题考查的知识点为圆锥曲线的性质,利用离心率即可。解答:根据焦点坐标知,由双曲线的简单几何性质知,所以,因此.故选C.二 、填空题12.椭圆为定值,且的的左焦点为,直线与椭圆相交于点、,的周长的最大值是12,则该椭圆的离心率是_。【答案】,解析根据椭圆定义知:4a=12, 得a=3 , 又点评本题考查对椭圆概念的掌握程度.突出展现高考前的复习要回归课本的新课标理念.13.)在平面直角坐标系中,若双曲线的离心率为,则的值为 【答案】2。【解析】由得。 ,即,解得。14右图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.【解析】建立如图所示的直角坐标系,使拱桥的顶点的坐标为(0,0), 设与抛物线的交点为,根据题意,知(-2,-2),(2,-2) 设抛物线的解析式为, 则有, 抛物线的解析式为 水位下降1米,则-3,此时有或 此时水面宽为米15.设为直线与双曲线 左支的交点,是左焦点,垂直于轴,则双曲线的离心率 16.已知双曲线与双曲线有相同的渐近线,且的右焦点为,则 【解析】双曲线的渐近线为,而的渐近线为,所以有,又双曲线的右焦点为,所以,又,即,所以。三、解答题17.已知椭圆(a>b>0),点P(,)在椭圆上。(I)求椭圆的离心率。(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|求直线的斜率的值。【解析】() 点在椭圆上 () 设;则 直线的斜率18.在平面直角坐标系中,已知椭圆:()的左焦点为,且点在上.(1)求椭圆的方程;(2)设直线同时与椭圆和抛物线:相切,求直线的方程.【答案】【解析】(1)因为椭圆的左焦点为,所以,点代入椭圆,得,即,所以,所以椭圆的方程为.(2)直线的斜率显然存在,设直线的方程为,消去并整理得,因为直线与椭圆相切,所以,整理得 ,消去并整理得。因为直线与抛物线相切,所以,整理得 综合,解得或。所以直线的方程为或。19.【2102高考北京文19】(本小题共14分)已知椭圆C:+=1(ab0)的一个顶点为A (2,0),离心率为, 直线y=k(x-1)与椭圆C交与不同的两点M,N()求椭圆C的方程()当AMN的面积为时,求k的值 【考点定位】此题难度集中在运算,但是整体题目难度确实不大,从形式到条件的设计都是非常熟悉的,相信平时对曲线的练习程度不错的学生做起来应该是比较容易的。解:(1)由题意得解得.所以椭圆C的方程为.(2)由得.设点M,N的坐标分别为,则,.所以|MN|=.由因为点A(2,0)到直线的距离,所以AMN的面积为. 由,解得.20.【2012高考湖南文21】(本小题满分13分)在直角坐标系xOy中,已知中心在原点,离心率为的椭圆E的一个焦点为圆C:x2+y2-4x+2=0的圆心.()求椭圆E的方程【答案】【解析】()由,得.故圆的圆心为点从而可设椭圆的方程为其焦距为,由题设知故椭圆的方程为:21.【2012高考陕西文20】(本小题满分13分)已知椭圆,椭圆以的长轴为短轴,且与有相同的离心率。(1)求椭圆的方程;(2)设O为坐标原点,点A,B分别在椭圆和上,求直线的方程。【解析】()由已知可设椭圆的方程为, 其离心率为,故,则 故椭圆的方程为 ()解法一:两点的坐标分别为, 由及()知,三点共线且点不在轴上, 因此可设直线的方程为 将代入中,得,所以, 将代入中,得,所以, 又由,得,即 解得,故直线的方程为或 解法二: 两点的坐标分别为, 由及()知,三点共线且点不在轴上, 因此可设直线的方程为 将代入中,得,所以, 又由,得, 将代入中,得,即, 解得,故直线的方程为或

    注意事项

    本文(文科圆锥曲线主题材料练习提高及其答案解析.doc)为本站会员(小**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开