欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2022年相似三角形-基本知识点+经典例题.docx

    • 资源ID:27870968       资源大小:889.63KB        全文页数:42页
    • 资源格式: DOCX        下载积分:4.3金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要4.3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2022年相似三角形-基本知识点+经典例题.docx

    精选学习资料 - - - - - - - - - 相像三角形学问点与经典题型学问点 1 有关相像形的概念 1 外形相同的图形叫相像图形,在相像多边形中,最简洁的是相像三角形 . 2 假如两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做 相像多边形相像多边形对应边长度的比叫做相像比 相像系数 学问点 2 比例线段的相关概念 am(1)假如选用同一单位量得两条线段 a,b 的长 度分别为 m,那么就说这两条线段的比是,或写 nbn m:n注:在求线段比时,线段单位要统一;成 a:b(2)在四条线段 a,b,c,d中,假如 a 和 b 的比等于 c 和 d 的比,那么这四条线段a,b,c,d叫做成比例线段, bd a 是 b,c,d的第四比例项,那简称比例线段注:比例线段是有次序的,假如说么应得比例式为:ca ac 在比例式a :bc:d 中, a、d 叫比例外项, b、c 叫比例内项 , a 、c 叫比例前项, b、d 叫比例后bd2 项,d 叫第四比例项,假如b=c,即 a :bb:d 那么 b 叫做 a、d 的比例中项,此时有 bad;(3)黄金分割:把线段 比例中项,即5 12 AB分成两条线段 AC,BCAC BC,且使 AC是 AB和 BC的AC AB BC,叫做把线段 AB黄金分割,点 C叫做线段 AB的黄金分割点,其中AC AB2 1 名师归纳总结 - - - - - - -第 1 页,共 27 页精选学习资料 - - - - - - - - - ACBC5 1 长短 510.618AB即简记为:ABAC2全长 2 0 注:黄金三角形:顶角是 的矩形36 的等腰三角形;黄金矩形:宽与长的比等于黄金数学问点 3 比例的性质(留意性质立的条件:分母不能为 0)(1) 基本性质: 2 ; a:b b:c b a ca:b c:d ad bc 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如 ad bc,除了可化为 a:b c:d ,仍可化为 a:c b:d ,c:d a:b ,b:d a:c ,b:a d:c ,c:a d:b ,d:c b:a ,d:b c:a ab, 交换内项 cdac dc(2) 更比性质 交换比例的内项或外项 :, 交换外项 bdbadb 同时交换内外项 caacbd(3)反比性质 把比的前项、后项交换 :bdac acabcd(4)合、分比性质:bdbd 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间 b ad c ac ac 发生同样和差变化比例仍成立如:等等bdabcdabcd acemacema(5)等比性质:假如bdfn0 ,那么bdfnbdfnb 2 名师归纳总结 - - - - - - -第 2 页,共 27 页精选学习资料 - - - - - - - - - 注:此性质的证明运用了“ 设k 法” (即引入新的参数k)这样可以削减未知数的个数,这种方法是有关比例运算变形中一种常用方法应用等比性质时,要考虑到分母是否为零可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立如: acea2c3ea2c3ea;其中 b2d3f0bdfb2d3fb2d3fb : 平行于三角形一边的直线截其它两边 或两学问点 4 比例线段的有关定理 1. 三角形中平行线分线段成比例定理边的延长线 所得的对应线段成比例 . A ADAEBDECADAE 由 DE BC可得:或或 DE DBECADEAABAC BC 注:重要结论:平行于三角形的一边 , 并且和其它两边相交的直线 , 所截的三角形的三边与原三角形三边对应成比例 . 三角形中平行线分线段成比例定理的逆定理:假如一条直线截三角形的两边 或两边的延长线 所得的对应线段成比例 . 那么这条直线平行于三角形的第三边 . 此定理给出了一种证明两直线平行方法 , 即:利用比例式证平行线 . 平行线的应用:在证明有关比例线段时,帮助线往往做平行线 , 但应遵循的原就是不要破坏条件中的两条线段的比及所求的两条线段的比 . 2. 平行线分线段成比例定理 : 三条平行线截两条直线 , 所截得的对应线段成比例 . AD 已知AD BE CF, BE ABDEABDEBCEFBCEFABBCF C 可得或或或或等. 3 名师归纳总结 - - - - - - -第 3 页,共 27 页精选学习资料 - - - - - - - - - BCEFACDFABDEACDFDEEF 注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,假如在其中一条上截得的线段 相等,那么在另一条上截得的线段也相等;学问点 5 相像三角形的概念 对应角相等,对应边成比例的三角形,叫做相像三角形相像用符号“ ” 表示,读作“ 相像于”相像三角形对应边的比叫做相像比 或相像系数 相像三角形对应角相等,对应边成比例注:对应性:即两个三角形相像时,肯定要把表示对应顶点的字母写在对应位置上,这样写比较简洁找到相像三角形的对应角和对应边似比是有次序的次序性:相像三角形的相两个三角形外形一样,但大小不肯定一样全等三角形是相像比为 1 的相像三角形二者的区分在于全等要求对应边相等,而相像要求对应边成比例学问点6 三角形相像的等价关系与三角形相像的判定定理的预备定理1 相像三角形的等价关系:反身性:对于任一 ABC有 ABCABC对称性:如 ABCA'B'C' ,就 A'B'C' ABC传递性:如 ABCA'B'C,且 A'B'CA B C,就ABCA B C2 三角形相像的判定定理的预备定理:平行于三角形一边的直线和其它两边 或两边延长线 相交,所构成的三角形与原三角形相像定理的基本图形: A EDA BC A 4 名师归纳总结 - - - - - - -第 4 页,共 27 页精选学习资料 - - - - - - - - - DE C CEB D B123 用数学语言表述是:DE/BC, ADEABC学问点 7 三角形相像的判定方法1、定义法:三个对应角相等,三条对应边成比例的两个三角形相像2、平行法:平行于三角形一边的直线和其它两边 的三角形与原三角形相像 或两边的延长线 相交,所构成3、判定定理 1:假如一个三角形的两个角与另一个三角形的两个角对应相等,那 么这两 个三角形相像简述为:两角对应相等,两三角形相像4、判定定理 2:假如一个三角形的两条边与另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相像简述为:两边对应成比例且夹角相等,两三角形 相像5、判定定理 3:假如一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相像简述为:三边对应成比例,两三角形相像6、判定直角三角形相像的方法:1 以上各种判定均适用2 假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直 角边对应成比例,那么这两个直角三角形相像5 名师归纳总结 - - - - - - -第 5 页,共 27 页精选学习资料 - - - - - - - - - 3 直角三角形被斜边上的高分成的两个直角三角形与原三角形相像注:射影定理:在直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项;每一条直角边是这条直角边在斜边上的射影和斜边的比例中项; A 如图, Rt ABC中, BAC=90° , AD是斜边 BC上的高,就 AD=BD· DC,AB=BD· BC ,AC=CD· BC ; 222 学问点 8 形 BC D 1 、下面我们来看一看相像三角形的几种基本图形:相像三角形常见的图(1) 如图:称为“ 平行线型” 的相像三角形(有“ A 型” 与“ X 型” 图) A A ED A DEBC CC E BB D 123 6 名师归纳总结 - - - - - - -第 6 页,共 27 页精选学习资料 - - - - - - - - - 2 如图:其中 1=2,就 ADE ABC称为“ 斜交型” 的相像三角形;(有“ 反 A 共角型” 、“ 反 A 共角共边型” 、“ 蝶型” ) AD A 1E E4E 1A D 1D 22C2 C BBCB (3) 如图:称为“ 垂直型” (有“ 双垂直共角型” 、“ 双垂直共角共边型(也称“ 射影定理型” )” “ 三垂直型” ) E A A B E E DAD C BC CD BA D24 如图: 1=2,B=D,就 ADE ABC,称为“ 旋转型” 的相像三角形;1 7 名师归纳总结 - - - - - - -第 7 页,共 27 页精选学习资料 - - - - - - - - - 2、几种基本图形的详细应用: E (1)如 DE BC(A 型和 X 型)就 ADE ABC BC(2)射影定理 如 CD为 Rt ABC斜边上的高(双直角图形)222 就 Rt ABCRt ACDRt CBD且 AC=AD· AB,CD=AD· BD,BC=BD· AB;ED AC ADEBCBCADB 2 (3)满意 1、AC=AD· AB, 2、ACD=B, 3、ACB=ADC,都可判定 ADC ACBADAE(4)当 或 AD· AB=AC· AE时, ADE ACBACAB AADDE BCBC 学问点 9:全等与相像的比较:三角形全等 三角形相像 相像判定的预备定理 两角夹一边对应相等 ASA 两角一对边对应相等 AAS 两角对应相等 两边及夹角对应相等 SAS 两边对应成比例,且夹角相等三边对应相等 SSS 三边对应成比例8 名师归纳总结 - - - - - - -第 8 页,共 27 页精选学习资料 - - - - - - - - - 直角三角形中始终角边与斜边对应相等 比例学问点 10 相像三角形的性质HL 直角三角形中斜边与始终角边对应成1 相像三角形对应角相等,对应边成比例2 相像三角形对应高的比,对应中线的比和对应角平分线的比都等于相像比3 相像三角形周长的比等于相像比4 相像三角形面积的比等于相像比的平方注:相像三角形性质可用来证明线段成比例、角相等,也可用来运算周长、边长等学问点 11 相像三角形中有关证(解)题规律与帮助线作法 1、证明四条线段成比例的常用方法:线段成比例的定义 1 2 三角形相像的预备定理 3 利用相像三角形的性质 4 利用中间比等量代换 5 利用面积关系 2、证明题常用方法归纳:(1)总体思路 : “ 等积” 变“ 比例” ,“ 比例” 找“ 相像” 找相像:通过“ 横找” “ 竖看” 查找三角形,即横向看或纵向查找的时候一 2 共各有三个不同的字母,并且这几个字母不在同一条直线上,能够组成三角形,并且有可能是相 似的,就可证明这两个三角形相像,然后由相像三角形对应边成比例即可证的所需的结论 . 3 找中间比:如没有三角形 即横向看或纵向查找的时候一共有四个字母或者三 个字母,但这9 名师归纳总结 - - - - - - -第 9 页,共 27 页精选学习资料 - - - - - - - - - 几个字母在同一条直线上 ,就需要进行“ 转移” 或“ 替换” ,常用的“ 替换” 方法有这样的三种:等线段代换、等比代换、等积代换 将等式左右两边的比表示出来;amcmmamcm' , 为中间比 ,nn 'bndnnbndn '' amcmmm'' ,mm,nn 或 ''bndnnn . 即:找相像找不到,找中间比;方法: 4 添加帮助线:如上述方法仍不能奏效的话,可以考虑添加帮助线 通常是添加平行线 构成比例. 以上步骤可以不断的重复使用,直到被证结论证出为止 . 注:添加帮助平行线是获得成比例线段和相像三角形的重要途径;平面直角坐标系中通常是作垂线(即得平行线)构造相像三角形或比例线段;(5)比例问题:常用处理方法是将“ 一份” 看着 是设“ 公比” 为 k;k; 对于等比问题,常用处理方法(6)对于复杂的几何图形,通常采纳将部分需要的图形(或基本图形)“ 分别”出来的方法处理;学问点 12 相像多边形的性质 1 相像多边形周长比,对应对角线的比都等于相像比2 相像多边形中对应三角形相像,相像比等于相像多边形的相像比3 相像多边形面积比等于相像比的平方留意:相像多边形问题往往要转化成相像三角形问题去解决,因此,娴熟把握相像 三角形学问是基础和关键学问点 13 位似图形有关的概念与性质及作法10 名师归纳总结 - - - - - - -第 10 页,共 27 页精选学习资料 - - - - - - - - - 1. 假如两个图形不仅是相像图形,而且每组对应顶点的连线都交于一点,那么这样的两个图形叫做位似图形 . 2. 这个点叫做位似中心,这时的相像比又称为位似比 . 注:(1) 位似图形是相像图形的特例,位似图形不仅相像,而且对应顶点的连线相交于一点 . (2) 位似图形肯定是相像图形,但相像图形不肯定是位似图形 . (3)位似图形的对应边相互平行或共线 . 3. 位似图形的性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比 . 注:位似图形具有相像图形的全部性质 . 4. 画位似图形的一般步骤:(1) 确定位似中心(位似中心可以是平面中任意一点)(2) 分别连接原图形中的关键点和位似中心,并延长(或截取). (3) 依据已知的位似比,确定所画位似图形中关键点的位置 . (4) 顺次连结上述得到的关键点,即可得到一个放大或缩小的图形 . 注:位似中心可以是平面内任意一点,该点可在图形内,或在图形外,或在图形上(图形边上或顶点上);外位似:位似中心在连接两个对应点的线段之外,称为“ 外位似” (即同向位似图形)内位似:位似中心在连接两个对应点的线段上,称为“ 内位似” (即反向位似图形)(5) 在平面直角坐标系中,假如位似变换是以原点O为位似中心,相像比为k(k>0), 原图形上点的坐标为( x,y ), 那么同向位似图形对应点的坐标为 kx,ky, 11 名师归纳总结 - - - - - - -第 11 页,共 27 页精选学习资料 - - - - - - - - - 反向位似图形对应点的坐标为 -kx,-ky, 12 名师归纳总结 - - - - - - -第 12 页,共 27 页精选学习资料 - - - - - - - - - 13 名师归纳总结 - - - - - - -第 13 页,共 27 页精选学习资料 - - - - - - - - - 经典例题透析 类型一、相像三角形的概念 1 判定对错: 1 两个直角三角形肯定相像吗?为什么? 2 两个等腰三角形肯定相像吗?为什么?两个等腰直角三角形肯定相像吗?为什么? 3 4 两个等边三角形肯定相像吗?为什么? 5 两个全等三角形肯定相像吗?为什么?思路点拨:要说明两个三角形相像,要同时满意对应角相等,对应边成比例 . 要 . 说明不相像,就只要否定其中的一个条件解:1 不肯定相像 . 反例 直角三角形只确定一个直角,其他的两对角可能相等,也可能不相等 . 所以直角 三角形不肯定相像 . 2 不肯定相像 . 反例等腰三角形中只有两边相等,而底边不固定. 因此两个等腰三角形中有两边对应成比例,两底边的比不肯定等于对应腰的比,所以等腰三角形不肯定相像 . 3肯定相像 . 在直角三角形 ABC与直角三角形 ABC 中14 名师归纳总结 - - - - - - -第 14 页,共 27 页精选学习资料 - - - - - - - - - 设 AB=a, AB=b,就 BC=a,BC=b, AC=a,AC=b ABCABC 4 肯定相像 . 由于等边三角形各边都相等,各角都等于60 度,所以两个等边三角形对应角相等,对应边成比例,因此两个等边三角形肯定相像 . 5 肯定相像 . 全等三角形对应角相等,对应边相等,所以对应边比为相像,且相像比为1. 举一反三【变式 1】两个相像比为 1 的相像三角形全等吗?解析:全等 . 由于这两个三角形相像,所以对应角相等边相等 . 因此这两个三角形全等 . 1,所以全等三角形肯定. 又相像比为 1,所以对应总结升华:由上可知,在特殊的三角形中,有的相像,有的不肯定相像 . 1两个直角三角形,两个等腰三角形不肯定相像 . 2 两个等腰直角三角形,两个等边三角形肯定相像 . 3 两个全等三角形肯定相像,且相像比为 1;相像比为 1 的两个相像三角形全等. 【变式 2】以下能够相像的一组三角形为 A. 全部的直角三角形 B. 全部的等腰三角形 C. 全部的等腰直角三角形 D.全部的一边和这边上的高相等的三角形解析:依据相像三角形的概念,判定三角形是否相像,肯定要满意三个角对应相等,三条对应边的比相等. 而 A 中只有一组直角相等,其他的角是否对应相等不行知; B中什么条件都不满意; D中只有一条对应边的比相等;C中全部三角形都是由 90° 、45° 、45° 角组成的三角形,且对应边的比也相等 相像三角形的判定. 答案选 C. 类型二、 2 如下列图,已知中, E 为 AB 延长线上的一点, AB=3BE,DE与 BC相交于 F,请找出图中各15 名师归纳总结 - - - - - - -第 15 页,共 27 页精选学习资料 - - - - - - - - - 对相像三角形,并求出相应的相像比 . 思路点拨:由可知AB CD,AD BC,再依据平行线找相像三角形. 解:四边形 ABCD是平行四边形, AB CD,AD BC, BEF CDF, BEF AED. BEF CDF AED. 当 BEF CDF时,相像比;当BEF AED时,相像比;当 CDF AED时,相像比 . 总结升华:此题中BEF、 CDF、 AED都相像,共构成三对相像三角形. 求相似比不仅要找准对应边,仍需留意两个三角形的先后次序,如次序颠倒,就相像比成为原先的倒数 . 3 已知在 Rt ABC中, C=90° , AB=10,BC=6.在 Rt EDF中, F=90° ,DF=3,EF=4,就 ABC和 EDF相像吗?为什么?思路点拨:已知ABC和 EDF都是直角三角形,且已知两边长,所以可利用勾股定理分别求出第三边 AC和 DE,再看三边是否对应成比例 . 解:在 Rt ABC中,AB=10,BC=6,C=90° . 由勾股定理得 . 在 Rt DEF中,DF=3,EF=4,F=90° . 由勾股定理,得 . 在 ABC和 EDF中, 1 ABC EDF三边对应成比例,两三角形相像. 总结升华:. 利用此题易错为只看 3,6,4,10 四条线段不成比例就判定两三角形不相像三边判定两三角形相似,应看三角形的三边是否对应成比例,而不是两边 . 2 此题也可以只求出 AC的长,利用两组对应边的比相等,且夹角相等,判定两三角形相像 . 16 名师归纳总结 - - - - - - -第 16 页,共 27 页精选学习资料 - - - - - - - - - 4 如下列图,点 D在 ABC的边 AB上,满意怎样的条件时,ACD与 ABC相似?试分别加以列举 . 思路点拨:此题属于探究问题,由相像三角形的识别方法可知,ACD与 ABC已有公共角 A,要使此两个三角形相像,可依据相像三角形的识别方法查找一个条件即可 . 解:当满意以下三个条件之一时,ACD ABC. 条件一:1=B. 条件二: 2=ACB. 条件三:,即 . 总结升华:此题的探究钥匙是相像三角形的识别方法 用分析法,可先假设ACD ABC,然后查找两个三角形中边的关系或角的关系即可 四: . 不符合. 在探究两个三角形相像时,. 此题易错为显现条件条件“ 最小化” 原就,由于条件三能使问题成立,所以显现条件四是错误的 . 举一反三【变式 1】已知:如图正方形 点ABCD中,P 是 BC上的点,且 BP=3PC,Q是 CD的中求证: ADQ QCP思路点拨:因ADQ与 QCP是直角三角形,虽有相等的直角,但不知AQ与 PQ是否垂直,所以不能用两个角对应相等判定而四边形ABCD是正方形, Q是 CD中点,而 BP=3PC,所以可用对应边成比例夹角相等的方法来判定详细证明过程如下:证明:在正方形 ABCD中,Q 是 CD的中点, =2 17 名师归纳总结 - - - - - - -第 17 页,共 27 页精选学习资料 - - - - - - - - - =3,=4 又BC=2DQ,=2 在 ADQ和 QCP中, =,C=D=90° , ADQ QCP【变式 2】如图,弦和弦相交于内一点,求证:. 思路点拨:题目中求证的是等积式,我们可以转化为比例式,从而找到应证哪两个三角形相像 . 同时圆当中同弧或等弧所对的圆周角相等要会敏捷应用. 证明:连接 ,. 在 . 【变式 3】已知:如图, AD是 ABC的高, E、F 分别是 AB、AC的中点求证: DFE ABC和 DF都是直角三角形斜边思路点拨: EF为 ABC的中位线, EF=BC,又 DE上的中线, DE=AB,DF=AC因此考虑用三边对应成比例的两个三角形相像证明:在 Rt ABD中,DE为斜边 AB上的中线, DE=AB,18 名师归纳总结 - - - - - - -第 18 页,共 27 页精选学习资料 - - - - - - - - - 即 = 同理 = EF 为 ABC的中位线, EF=BC,即 = = DFE ABC总结升华:此题证明方法较多,可先证再证夹这个角的两EDF=EDA+ADF=EAD+FAD=BAC,边成比例,即 =,也可证明 FED=EDB=B,同理 EFD=FDC=C,都可以证出 DEF ABC类型三、相像三角形的性质 5 ABC DEF,如 ABC的边长分别为 5cm、6cm、7cm,而 4cm是 DEF中一边的长度,你能求出DEF的另外两边的长度吗?试说明理由. 思路点拨:因没有说明长4cm的线段是 DEF的最大边或最小边,因此需分三种情形进行争论 . 解:设另两边长是xcm,ycm,且 x<y. 1当 DEF中长 4cm线段与 ABC中长 5cm线段是对应边时,有,从而 x=cm,y=cm. 2 对应边时,有,从而 x=cm,y=cm. 3当 DEF中长 4cm线段与 ABC中长 6cm线段是当 DEF中长 4cm线段与 ABC中长 7cm线段是对应边时,有,从而 x=cm,y=cm. 综上所述, DEF的另外两边的长度应是 cm,cm或 cm,cm或 cm,cm三种可能 . 总结升华:肯定要深刻懂得“ 对应” ,如题中没有给出图形,要特殊留意是否有图形的分类 . 6 如下列图,已知ABC中, AD是高,矩形 EFGH内接于 ABC中,且长边 FG在 BC上,矩形相邻两边的比为 1:2,如 BC=30cm,AD=10cm.求矩形 EFGH的面积 . 19 名师归纳总结 - - - - - - -第 19 页,共 27 页精选学习资料 - - - - - - - - - 思路点拨:利用已知条件及相像三角形的判定方法及性质求出矩形的长和宽,从 而求出矩形的面积 . 解:四边形 EFGH是矩形, EH BC, AEH ABC. ADBC, AD EH,MD=EF. 矩形两邻边之比为1:2,设 EF=xcm,就 EH=2xcm. 由相像三角形对应高的比等于相像比,得, . EF=6cm,EH=12cm. . 总结升华:解决有关三角形的内接矩形、内接正方形的运算问题,常常利用相像 三角形“ 对应高的比等于相像比” 和“ 面积比等于相像比的平方” 的性质,如图中没有高可以先作出高 . 举一反三【变式 1】 ABC中,DE BC,M为 DE中点,CM交 AB于 N,如,求 . 解: DE BC , ADE ABC M 为 DE中点, DM BC , NDM NBC =1:2. 总结升华:图中有两个“ ” 字形,已知线段AD与 AB的比和要求的线段ND与 NB的比分别在这两个“ ”字形,利用 M为 DE中点的条件将条件由一个“ ” 字形转化到另一个“ ” 字形,从而解决问题 . 类型四、相像三角形的应用 7 如图,我们想要测量河两岸相对应两点 么方法?20 A、B 之间的距离 即河宽 ,你有什名师归纳总结 - - - - - - -第 20 页,共 27 页精选学习资料 - - - - - - - - - 方案 1:如上左图,构造全等三角形,测量 方案 2:CD,得到 AB=CD,得到河宽 . 思路点拨:这是一道测量河宽的实际问题,仍可以借用相像三角形的对应边的比相等,比例式中四条线段,测出了三条线段的长,必能求出第四条 . 如上右图,先从 B 点动身与 AB成 90° 角方向走 50m到 O处立一标杆,然后方向不变,连续向前走 10m到 C处,在 C处转 90° ,沿 CD方向再走 17m到达 D处,使得 A、O、D在同一条直线上那么A、B 之间的距离是多少?解: ABBC,CDBC ABO=DCO=90° 又 AOB=DOC AOB DOC BO=50m, CO=10m,CD=17m AB=85m 答:河宽为 85m总结升华:方案 2 利用了“ ” 型基本图形,实际上测量河宽有许多方法,可以用“ ” 型基本图形,借助相像;也可用等腰三角形等等 . 举一反三21 名师归纳总结 - - - - - - -第 21 页,共 27 页精选学习资料 - - - - - - - - - 【变式 1】如图:小明欲测量一座古塔的高度,他站在该塔的影子上前后移动,直到他本身影子的顶端正好与塔的影子的顶端重叠,此时他距离该塔 18 m,已知小明的身高是 1.6 m ,他的影长是 2 m 1图中 ABC与 ADE是否相像 .为什么 . 2求古塔的高度解:1 ABC ADEBCAE,DEAE ACB=AED=90° A=A ABC ADE 2 由 1 得 ABC ADE AC=2m,AE=2+18=20m,BC=1.6m DE=16m 答:古塔的高度为 16m. 【变式 2】已知:如图,阳光通过窗口照耀到室内,在地面上留下 1.5m 宽的亮区 DE.亮区一边到窗下的墙脚距离 的高 BC?22 CE=1.2m,窗口高 AB=1.8m,求窗口底边离地面名师归纳总结 - - - - - - -第 22 页,共 27 页精选学习资料 - - - - - - - - - 思路点拨:光线 AD/BE,作 EFDC交 AD于 F. 就,利用边的比例关系求出 BC. 解:作 EFDC交 AD于 F. 由于 AD BE,所以又由于,所以,所以 . 由于 AB EF, AD BE,所以四边形 ABEF是平行四边形,所以 EF=AB=1.8m. 所以 m. 类型五、相像三角形的周长与面积 8 已知:如图,在ABC与 CAD中,DA BC, CD与 AB相交于 E点,且 AEEB=12,EF BC交 AC于 F 点, ADE的面积为 1,求 BCE和 AEF的面积思路点拨:利用ADE BCE,以及其他有关的已知条件,可以求出BCE的面积 ABC的边 AB上的高也是 BCE的高,依据 ABBE=32,可求出 ABC的面 积最终利用AEF ABC,可求出 AEF的面积解: DA BC, ADE BCE 22 SS=AEBE ADE BCE AE BE=12, SS=14 ADE BCE S=1, ADE S=4 BCE S S=ABBE=32, ABC BCE S=6 ABC EF BC,23 名师归纳总结 - - - - - - -第 23 页,共 27 页精选学习资料 - - - - - - - - - AEF ABC AE AB=13, 22 AEF ABC S= S S=AEAB=19 AEF 总结升华:留意,同底 或等底 三角形的面积比等于这底上的高的比;同高 或等高 三角形的面积比等于对应底边的比当两个三角形相像时,它们的面积比等于对应线段比的平方,即相像比的平方举一反三【变式 1】有同一三角形地块的甲、乙两地图,比例尺分别为 1200 和 1500,求:甲地图与乙地图的相像比和面积比 . 解:设原地块为ABC,地块在甲图上为ABC,在乙图上为ABC. 111222 ABC ABC ABC 111222 且,. ,【变式 2】如图,已知:ABC中, AB=5,BC=3,AC=4,PQ/AB,P点在 AC上 与点 A、C不重合 ,Q点在 BC上 1当

    注意事项

    本文(2022年相似三角形-基本知识点+经典例题.docx)为本站会员(Q****o)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开