欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    小学数学概念整编汇总.doc

    • 资源ID:2787428       资源大小:82.50KB        全文页数:28页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    小学数学概念整编汇总.doc

    #+数学概念整理: 整数部分: 十进制计数法;一(个)、十、百、千、万都叫做计数单位。其中“一”是计数的基本单位。10个1是10,10个10是100每相邻两个计数单位之间的进率都是十。这种计数方法叫做十进制计数法 整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读。其他数位一个或连续几个0都只读一个“零”。 整数的写法:从高位一级一级写,哪一位一个单位也没有就写0。 四舍五入法:求近似数,看尾数最高位上的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。 整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推。 小数部分: 把整数1平均分成10份、100份、1000份这样的一份或几份是十分之几、百分之几、千分之几这些分数可以用小数表示。如1/10记作0.1,7/100记作0.07。 小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.36是两位小数,3.066是三位小数 小数的读法:整数部分整数读,小数点读点,小数部分顺序读。 小数的写法:小数点写在个位右下角。 小数的性质:小数末尾添0去0大小不变。化简 小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍。 小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推。 分数和百分数 分数和百分数的意义 1、 分数的意义:把单位“ 1” 平均分成若干份,表示这样的一份或者几份的数,叫做分数。在分数里,表示把单位“ 1” 平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位。 2、 百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。也叫百分率或百分比。百分数通常不写成分数的形式,而用特定的“%”来表示。百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称。 3、 百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。 4、 成数:几成就是十分之几。 分数的种类 按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数 分数和除法的关系及分数的基本性质 1、 除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。 2、 由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。 3、 分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。 约分和通分 1、 分子、分母是互质数的分数,叫做最简分数。 2、 把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。 3、 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。 4、 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。 5、 通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。 倒 数 1、 乘积是1的两个数互为倒数。 2、 求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。 3、 1的倒数是1,0没有倒数 分数的大小比较 1、 分母相同的分数,分子大的那个分数就大。 2、 分子相同的分数,分母小的那个分数就大。 3、 分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。 4、 如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。 分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 倒数的概念:1.如果两个数乘积是1,我们称一个是另一个的倒数。这两个数互为倒数。1的倒数是1,0没有倒数。 分数除以整数(0除外),等于分数乘以这个整数的倒数。 分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小 分数的除法则:除以一个数(0除外),等于乘这个数的倒数。 真分数:分子比分母小的分数叫做真分数。 假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 带分数:把假分数写成整数和真分数的形式,叫做带分数。 分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 百分数与折数、成数的互化: 例如:三折就是30,七五折就是75,成数就是十分之几,如一成就是牐 闯砂俜质 褪?0%,则六成五就是65%。 纳税和利息: 税率:应纳税额与各种收入的比率。 利率:利息与本金的百分率。由银行规定按年或按月计算。 利息的计算公式:利息=本金利率时间 百分数与分数的区别主要有以下三点: 1意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说 1米 是 5米 的 20,不可以说“一段绳子长为20米。”因此,百分数后面不能带单位名称。分数是“把单位1平均分成若干份,表示这样一份或几份的数”。分数不仅 可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌恕 米等。 2应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。 3书写形式不同。百分数通常不写成分数形式,而采用百分号“”来表示。如:百分之四十五,写作:45;百分数的分母固定为100,因此,不论百分数 的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分 数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。 数的整除 整除的意义 整数a除以整数b(b0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a) 除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。有余数的除法: 被除数商除数+余数 约数和倍数 1、如果数a能被数b整除,a就叫b的倍数,b就叫a的约数。2、一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。3、一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。倍数与约数 最大公约数:几个数公有的约数,叫做这几个数的公约数。公因数有有限个。其中最大的一个叫做这几个数的最大公约数。 最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。公倍数有无限个。其中最小的一个叫做这几个数的最小公倍数。 互质数: 公约数只有1的两个数,叫做互质数。相临的两个数一定互质。两个连续奇数一定互质。1和任何数互质。 通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数) 约分:把一个分数的分子、分母同时除以公约数,分数值不变,这个过程叫约分。 最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。 奇数和偶数 1、能被2整除的数叫偶数。例如:0、2、4、6、8、10注:0也是偶数 2、不能被2整除的数叫基数。例如:1、3、5、7、9 整除的特征 2的倍数的特征:各位是0,2,4,6,8。 3(或9)的倍数的特征:各个数位上的数之和是3(或9)的倍数。 5的倍数的特征:各位是0,5。 4(或25)的倍数的特征:末2位是4(或25)的倍数。 8(或125)的倍数的特征:末3位是8(或125)的倍数。 7(11或13)的倍数的特征:末3位与其余各位之差(大-小)是7(11或13)的倍数。 17(或59)的倍数的特征:末3位与其余各位3倍之差(大-小)是17(或59)的倍数。 19(或53)的倍数的特征:末3位与其余各位7倍之差(大-小)是19(或53)的倍数。 23(或29)的倍数的特征:末4位与其余各位5倍之差(大-小)是23(或29)的倍数。 倍数关系的两个数,最大公约数为较小数,最小公倍数为较大数。 互质关系的两个数,最大公约数为1,最小公倍数为乘积。 两个数分别除以他们的最大公约数,所得商互质。 两个数的与最小公倍数的乘积等于这两个数的乘积。 两个数的公约数一定是这两个数最大公约数的约数。 1既不是质数也不是合数。 用6去除大于3的质数,结果一定是1或5。质数和合数 1、一个数只有1和它本身两个约数,这个数叫做质数(素数)。 2、一个数除了1和它本身外,还有别的约数,这个数叫做合数。 3、1既不是质数,也不是合数。 4、自然数按约数的个数可分为:质数、合数 5、自然数按能否被2整除分为:奇数、偶数 分解质因数 1、每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。例如:18=332,3和2叫做18的质因数。 2、把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。 3、几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。公因数只有1的两个数,叫做互质数。几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍数。 4、特殊情况下几个数的最大公约数和最小公倍数。(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数。(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积。 奇数和偶数的运算性质: 1、相邻两个自然数之和是奇数,之积是偶数。 2、奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数, 奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数奇数=奇数,奇数偶数=偶数,偶数偶数=偶数。 整数、小学、分数四则混合运算 四则运算的法则 1、加法a、整数和小数:相同数位对齐,从低位加起,满十进一b、同分母分数:分母不变,分子相加;异分母分数:先通分,再相加 2、减法a、整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减b、同分母分数:分母不变,分子相减;异分母分数:先通分,再相减 3、乘法a、整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同b、分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分,结果要化简 4、除法a、整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于甲数除以乙数的倒数 运算定律 加法交换律 ab=ba 结合律 (ab)c=a(bc) 减法性质 abc=a(bc) a(bc)=abc 乘法交换律 ab=ba 结合律 (ab)c=a(bc) 分配律 (ab)c=acbc 除法性质 a(bc)=abc a(bc)=abc (ab)c=acbc (ab)c=acbc 商不变性质m0 ab=(am)(bm) =(am)(bm) 积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。 推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。 一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。 商不变规律:在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。 被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。 利用积的变化规律和商不变规律性质可以使一些计算简便。但在有余数的除法中要注意余数。 如:8500200= 可以把被除数、除数同时缩小100倍来除,即852= ,商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100。 简易方程 用字母表示数 用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。 用字母表示数的注意事项 1、数字与字母、字母和字母相乘时,乘号可以简写成“或省略不写。数与数相乘,乘号不能省略。 2、当1和任何字母相乘时,“ 1” 省略不写。 3、数字和字母相乘时,将数字写在字母前面。 含有字母的式子及求值 求含有字母的式子的值或利用公式求值,应注意书写格式 等式与方程 表示相等关系的式子叫等式。 含有未知数的等式叫方程。 判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。所以,方程一定是等式,但等式不一定是方程。 方程的解和解方程 使方程左右两边相等的未知数的值,叫方程的解。 求方程的解的过程叫解方程。 在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x。 解方程的方法 1、直接运用四则运算中各部分之间的关系去解。如x-8=12 加数+加数=和 一个加数=和另一个加数 被减数减数=差 减数=被减数差 被减数=差减数 被乘数乘数=积 一个因数=积另一个因数 被除数除数=商 除数=被除数商 被除数=除数商 2、先把含有未知数x的项看作一个数,然后再解。如3x+20=41 先把3x看作一个数,然后再解。 3、按四则运算顺序先计算,使方程变形,然后再解。如2.54-x=4.2, 要先求出2.54的积,使方程变形为10-x=4.2,然后再解。 4、利用运算定律或性质,使方程变形,然后再解。如:2.2x7.8x20 先利用运算定律或性质使方程变形为(2.27.8)x20,然后计算括号里面使方程变形为10x20,最后再解。 比和比例 比和比例应用题 在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”。 解题策略 按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答 正、反比例应用题的解题策略 1、审题,找出题中相关联的两个量 2、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系。 3、设未知数,列比例式 4、解比例式 5、检验,写答语 比 什么叫比:两个数相除就叫做两个数的比。如:25或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。 什么叫比例:表示两个比相等的式子叫做比例。如3:69:18 比例的基本性质:在比例里,两外项之积等于两内项之积。 解比例:求比例中的未知项,叫做解比例。如3:9:18 正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k( k一定)或kx=y 反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。 如:xy = k( k一定)或k / x = y 数感和符号感 引进字母表示,是学习数学符号、学会用符号表示具体情境中隐含的数量关系和变化规律的重要一步。尽可能从实际问题中引入,感受字母表示的意义。 第一,用字母表示运算法则、运算定律以及计算公式。算法的一般化,深化和发展了对数的认识。 第二,用字母表示现实世界和各门学科中的各种数量关系。例如,匀速运动中的速度v、时间t和路程s的关系是s=vt。 第三,用字母表示数,便于从具体情境中抽象出数量关系和变化规律,并确切地表示出来,从而有利于进一步用数学知识去解决问题。例如,我们用字母表示实际问题中的未知量,利用问题中的相等关系列出方程。 字母和表达式在不同场合有不同的意义。如: 5=2x+1表示x所满足的一个条件,事实上,x这里只占一个特殊数的位置,可以利用解方程找到它的值; Y=2x表示变量之间的关系,x是自变量,可以取定义域内任何数,y是因变量,y随x的变换而变化; (a+b)(ab)=ab表示一个一般化的算法,表示一个恒等式; 如果a和b分别表示矩形的长和宽,S表示矩形的面积,那么S=ab表示计算矩形面积公式,同时也表示矩形的面积随长和宽的变化而变化。 量的计算 事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。 数+单位名称=名数 只带有一个单位名称的叫做单名数。 带有两个或两个以上单位名称的叫做复名数 高级单位的数如把米改成厘米 低级单位的数如把厘米改成米 只带有一个单位名称的数叫做单名数。如:5小时, 3千克 (只有一个单位的) 带有两个或两个以上单位名称的叫做复名数。如:5小时6分,3千克500克(有两个单位的) 56平方分米=(0.56)平方米 就是单名数转化成单名数 560平方分米=(5)平方米(60平方分米) 就是单名数转化成复名数的例子. 高级单位与低级单位是相对的.比如,"米"相对于分米,就是高级单位,相对于千米就是低级单位. 常用计算公式表 闰年年份是4的倍数,整百年份须是400的倍数。 公元1年100年是第一世纪,公元19012000是第二十世纪。 平面图形的认识和计算 三角形 1、三角形是由三条线段围成的图形。它具有稳定性。从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高。一个三角形有三条高。 2、三角形的内角和是180度 3、三角形按角分,可以分为:锐角三角形、直角三角形、钝角三角形 4、三角形按边分,可以分为:等腰三角形、等边三角形、不等边三角形 四边形 1、四边形是由四条线段围成的图形。 2、任意四边形的内角和是360度。 3、只有一组对边平行的四边形叫梯形。 4、两组对边分别平行的四边形叫平行四边形,它容易变形。长方形、正方形是特殊的平行四边形;正方形是特殊的长方形。 圆 圆是平面上的一种曲线图形。同圆或等圆的直径都相等,直径等于半径的2倍。圆有无数条对称轴。圆心确定圆的位置,半径确定圆的大小。 扇形 由圆心角的两条半径和它所对的弧围成的图形。扇形是轴对称图形。 轴对称图形 1、如果一个图形沿着一条直线对折,两边的图形能够完全重合,这个图形叫做轴对称图形;这条窒息那叫做对称轴。 2、线段、角、等腰三角形、长方形、正方形等都是轴对称图形,他们的对称轴条数不等。 周长和面积 1、平面图形一周的长度叫做周长。 2、平面图形或物体表面的大小叫做面积。 3、常见图形的周长和面积计算公式小学全级数学公式1、 每份数份数总数 总数每份数份数 总数份数每份数2、 1倍数倍数几倍数 几倍数1倍数倍数几倍数倍数1倍数 3、 速度时间路程 路程速度时间 路程时间速度 4、 单价数量总价 总价单价数量 总价数量单价 5、 工作效率工作时间工作总量 工作总量工作效率工作时间工作总量工作时间工作效率 6、 加数加数和 和一个加数另一个加数 7、 被减数减数差 被减数差减数 差减数被减数 8、 因数因数积 积一个因数另一个因数 9、 被除数除数商 被除数商除数 商除数被除数 小学数学图形计算公式 1 、正方形 C周长 S面积 a边长 周长边长4 C=4a 面积=边长边长 S=aa 2 、正方体 V:体积 a:棱长 表面积=棱长棱长6 S表=aa6 体积=棱长棱长棱长 V=aaa 3 、长方形 C周长 S面积 a边长 周长=(长+宽)2 C=2(a+b) 面积=长宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长宽+长高+宽高)2 S=2(ab+ah+bh) (2)体积=长宽高 V=abh 5 三角形 s面积 a底 h高 面积=底高2 s=ah2 三角形高=面积 2底 三角形底=面积 2高 6 平行四边形 s面积 a底 h高 面积=底高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)高2 s=(a+b) h2 8 圆形 S面积 C周长 d=直径 r=半径 (1)周长=直径=2半径 C=d=2r (2)面积=半径半径 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长高 (2)表面积=侧面积+底面积2 (3)体积=底面积高 (4)体积侧面积2半径 10 圆锥体 v:体积 h:高 s:底面积 r:底面半径 体积=底面积高3 总数总份数平均数 和差问题的公式 (和差)2大数 (和差)2小数 和倍问题 和(倍数+1)小数 小数倍数大数 (或者 和小数大数) 差倍问题 差(倍数1)小数 小数倍数大数 (或 小数差大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: 如果在非封闭线路的两端都要植树,那么: 株数段数1全长株距1 全长株距(株数1) 株距全长(株数1) 如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数段数全长株距 全长株距株数 株距全长株数 如果在非封闭线路的两端都不要植树,那么: 株数段数1全长株距1 全长株距(株数1) 株距全长(株数1) 2 封闭线路上的植树问题的数量关系如下 株数段数全长株距 全长株距株数 株距全长株数 盈亏问题 (盈亏)两次分配量之差参加分配的份数 (大盈小盈)两次分配量之差参加分配的份数 (大亏小亏)两次分配量之差参加分配的份数 相遇问题 相遇路程速度和相遇时间 相遇时间相遇路程速度和 速度和相遇路程相遇时间 追及问题 追及距离速度差追及时间 追及时间追及距离速度差 速度差追及距离追及时间 流水问题 顺流速度静水速度水流速度 逆流速度静水速度水流速度 静水速度(顺流速度逆流速度)2 水流速度(顺流速度逆流速度)2 浓度问题 溶质的重量溶剂的重量溶液的重量 溶质的重量溶液的重量100%浓度 溶液的重量浓度溶质的重量 溶质的重量浓度溶液的重量 利润与折扣问题 利润售出价成本 利润率利润成本100%(售出价成本1)100% 涨跌金额本金涨跌百分比 折扣实际售价原售价100%(折扣1) 利息本金利率时间 税后利息本金利率时间(120%) 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1亩666.666平方米。 体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 1公斤= 1市斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 小学数学几何形体周长 面积 体积计算公式 1、长方形的周长=(长+宽)2 C=(a+b)2 2、正方形的周长=边长4 C=4a 3、长方形的面积=长宽 S=ab 4、正方形的面积=边长边长 S=a.a= a 5、三角形的面积=底高2 S=ah2 6、平行四边形的面积=底高 S=ah 7、梯形的面积=(上底+下底)高2 S=(ab)h2 8、直径=半径2 d=2r 半径=直径2 r= d2 9、圆的周长=圆周率直径=圆周率半径2 c=d =2r 10、圆的面积=圆周率半径半径 您已经评价过!、 每份数份数总数 总数每份数份数总数份数每份数 2、 1倍数倍数几倍数 几倍数1倍数倍数几倍数倍数1倍数 3、 速度时间路程 路程速度时间 路程时间速度 4、 单价数量总价 总价单价数量 总价数量单价 5、 工作效率工作时间工作总量 工作总量工作效率工作时间工作总量工作时间工作效率 6、 加数加数和 和一个加数另一个加数 7、 被减数减数差 被减数差减数 差减数被减数 8、 因数因数积 积一个因数另一个因数 9、 被除数除数商 被除数商除数 商除数被除数 1 、正方形 C周长 S面积 a边长 周长边长4 C=4a 面积=边长边长 S=aa 2 、正方体 V:体积 a:棱长 表面积=棱长棱长6 S表=aa6 体积=棱长棱长棱长 V=aaa 3 、长方形 C周长 S面积 a边长 周长=(长+宽)2 C=2(a+b) 面积=长宽 S=ab 4 、长方体 V:体积 s:面积 a:长 b: 宽 h:高 (1)表面积(长宽+长高+宽高)2 S=2(ab+ah+bh) (2)体积=长宽高 V=abh 5 三角形 s面积 a底 h高 面积=底高2 s=ah2 三角形高=面积 2底 三角形底=面积 2高 6 平行四边形 s面积 a底 h高 面积=底高 s=ah 7 梯形 s面积 a上底 b下底 h高 面积=(上底+下底)高2 s=(a+b) h2 8 圆形 S面积 C周长 d=直径 r=半径 (1)周长=直径=2半径 C=d=2r (2)面积=半径半径 9 圆柱体 v:体积 h:高 s;底面积 r:底面半径 c:底面周长 (1)侧面积=底面周长高 (2)表面积=侧面积+底面积2 (3)体积=底面积高 (4)体积侧面积2半径 10 圆锥体 v:体积 h:高 s;底面积 r:底面半径 体积=底面积高3 总数总份数平均数 和差问题的公式 (和差)2大数 (和差)2小数 和倍问题 和(倍数1)小数 小数倍数大数 (或者 和小数大数) 差倍问题 差(倍数1)小数 小数倍数大数 (或 小数差大数) 植树问题 1 非封闭线路上的植树问题主要可分为以下三种情形: 如果在非封闭线路的两端都要植树,那么: 株数段数1全长株距1 全长株距(株数1) 株距全长(株数1) 如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数段数全长株距 全长株距株数 株距全长株数 如果在非封闭线路的两端都不要植树,那么: 株数段数1全长株距1 全长株距(株数1) 株距全长(株数1) 2 封闭线路上的植树问题的数量关系如下 株数段数全长株距 全长株距株数 株距全长株数 盈亏问题 (盈亏)两次分配量之差参加分配的份数 (大盈小盈)两次分配量之差参加分配的份数 (大亏小亏)两次分配量之差参加分配的份数 相遇问题 相遇路程速度和相遇时间 相遇时间相遇路程速度和 速度和相遇路程相遇时间 追及问题 追及距离速度差追及时间 追及时间追及距离速度差 速度差追及距离追及时间 流水问题 顺流速度静水速度水流速度 逆流速度静水速度水流速度 静水速度(顺流速度逆流速度)2 水流速度(顺流速度逆流速度)2 浓度问题 溶质的重量溶剂的重量溶液的重量 溶质的重量溶液的重量100%浓度 溶液的重量浓度溶质的重量 溶质的重量浓度溶液的重量 利润与折扣问题 利润售出价成本 利润率利润成本100%(售出价成本1)100% 涨跌金额本金涨跌百分比 折扣实际售价原售价100%(折扣1) 利息本金利率时间 税后利息本金利率时间(120%) 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 六年级数学知识六上知识:(1)把圆分成若干份,可以拼成一个近似的长方形,这个长方形相当于圆周长的一半,宽相当于半径,因此圆的面积公式等于 半径乘半径乘,也就是s等于r的二次方。(2)比、除法、分数的关系除数 被除数 除数 除号 商比 前项 后项 比号 比值分数 分子 分母 分数线 分数值(3)分数除法关键1、找关键词句 关键2、找单位“1” 关键3、判断单位“1”已知用乘法未知用除法或解方程(4)分数与百分数的不同分数表示一个数,又可以表示两个数的比,带单位;分数表示一个数是另一个数的几分之几。百分数只表示两个数相比的关系,不表示一个数的值,后面不带单位。(5)一个数的几分之几是多少用乘法一个数是另一个数的几分之几用除法(6)圆的知识在同圆或等圆中中:1、半径有无数条,都相等;直径有无数条,都相等;2、半径是直径的一半,直径是半径的2倍;3、半径越长,直径越长,圆越大、周长越长;4、圆中的线段中直径是最长的;5、半径的长短决定圆的大小;6、圆心决定圆的位置。六下知识(1)棱:棱在多面体中,各相邻的面的公共边,叫做多面体的棱。(2)圆柱:以长方形的一边为轴,把它旋转360,所得的几何体,叫做直圆柱,简称圆柱。这个旋转的长方形中与轴相对的一边,叫做圆柱的母线。圆柱上、下两个面是两个相对的圆面,叫做圆柱的底面;曲面部分叫做圆柱的侧面,两个底面间的距离,叫做圆柱的高。方程、代数与等式 等式:等号左边的数值与等号右边的数值相等的式子叫做等式。 等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 方程式:含有未知数的等式叫方程式。 一元一次方程式:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。学会一元一次方程式的例法及计算。即例出代有的算式并计算。 代数: 代数就是用字母代替数。 代数式:用字母表示的式子叫做代数式。如:3x =ab+c

    注意事项

    本文(小学数学概念整编汇总.doc)为本站会员(小**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开