欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    电路分析相量法ppt课件.ppt

    • 资源ID:27956618       资源大小:1,016.50KB        全文页数:29页
    • 资源格式: PPT        下载积分:20金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要20金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    电路分析相量法ppt课件.ppt

    变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分第第8 8章章 相量法相量法8-1 8-1 复数复数8-2 8-2 正弦量正弦量8-3 8-3 相量法的基础相量法的基础8-4 8-4 电路定律的相量形式电路定律的相量形式变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分8-1 复数复数 相量法是线性电路正弦稳态分析的一种简便有效的方相量法是线性电路正弦稳态分析的一种简便有效的方法。应用相量法,需要用到复数的运算。法。应用相量法,需要用到复数的运算。1.1.复数的表示形式复数的表示形式1)1)代数形式代数形式)1( jjbaF 在数学中虚单位常用在数学中虚单位常用i表示,如表示,如F= =a+ +bi,但由于在电路,但由于在电路中已用中已用i表示电流,故虚单位改用表示电流,故虚单位改用j表示表示。aF Re实部实部 ImbF 虚部虚部复数可用复平面上的复数可用复平面上的向量向量表示:表示:Fab bo o+ +j+1+1| F变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分Fabo+j+1| F2)2)三角形式三角形式)sin(cos| jFF 则则为为复复数数的的幅幅角角为为复复数数的的模模,。, arg |FF jbaF 22 arctan()Fabb/a |cos |sin aFbF且且3)3)指数形式指数形式) ( sincos 欧欧拉拉公公式式 jej jeFF| 4)4)极坐标形式极坐标形式 | FF变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分 222111则则,设设jbaFjbaF )()()()(2121221121bbjaajbajbaFF 平行四边形法则:平行四边形法则:F1o+j+1F2F1 +F2F1o+j+1F2F1F22.2.复数的运算复数的运算1)1)加减运算加减运算 复数的加减运算采用代数形式较为简便,或在复平面复数的加减运算采用代数形式较为简便,或在复平面中使用平行四边形法则。中使用平行四边形法则。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分)()()(12212121221121babajbbaajbajbaFF 2)2)乘法运算乘法运算a) )代数形式代数形式)(2121212121| jjjeFFeFeFFFb) )指数形式指数形式| 2121FFFF 212121)arg()arg()arg( FFFF 即复数乘积的模等于各复数模的积;其辐角等于各复数辐角即复数乘积的模等于各复数模的积;其辐角等于各复数辐角的和。的和。)(|2121221121 FFFFFFc) )极坐标形式极坐标形式可见复数的乘法运算使用指数形式或极坐标形式较为简便。可见复数的乘法运算使用指数形式或极坐标形式较为简便。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分22222112212122222211221121)()()()(bababajbbaajbajbajbajbajbajbaFF 3)3)除法运算除法运算a) )代数形式代数形式)(2121212121| jjjeFFeFeFFFb) )指数形式指数形式212121)arg()arg()arg( FFFFc) )极坐标形式极坐标形式)(|2121221121 FFFFFF| 2121FFFF 可见复数的除法运算使用指数形式或极坐标形式较为简便。可见复数的除法运算使用指数形式或极坐标形式较为简便。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分4) )相等运算相等运算 在复数运算中常有两个复数相等的运算。两个复数在复数运算中常有两个复数相等的运算。两个复数相等必须满足两个条件:复数的实部、虚部分别对应相相等必须满足两个条件:复数的实部、虚部分别对应相等;或者复数的模和辐角分别对应相等。即若等;或者复数的模和辐角分别对应相等。即若21FF ImIm ReRe 2121FFFF, 则必须有)arg()arg( | 2121FFFF, 或必须有变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分3. .旋转因子旋转因子 根据欧拉公式可得根据欧拉公式可得e j/2/2= =j j,e - -j/2/2=-=-j j,e j=-1=-1。因此。因此“j ”和和“1”1”都可以看成旋转因子。若一个复数乘以都可以看成旋转因子。若一个复数乘以j,等于在复平面上把该复数逆时针旋转等于在复平面上把该复数逆时针旋转/2/2。若一个复数除以。若一个复数除以j ,等于把该复数乘以,等于把该复数乘以j ,则等于在复平面上把该复数顺则等于在复平面上把该复数顺时针旋转时针旋转/2/2。 复数的乘、除运算表示为模的放大或缩小,辐角表示复数的乘、除运算表示为模的放大或缩小,辐角表示为逆时针旋转或顺时针旋转。复数为逆时针旋转或顺时针旋转。复数e j=1=1是一个模等是一个模等于于1 1,辐角为,辐角为的复数。任意复数的复数。任意复数F1 1=F1 1e j1 1乘以乘以e j等于把复数等于把复数F1 1逆时针旋转一个角度逆时针旋转一个角度,而,而F1 1的模值不变,的模值不变,所以所以ejj称为称为旋转因子旋转因子。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分8-2 8-2 正弦量正弦量1.1.正弦量的定义正弦量的定义 电路中按正弦规律变化的电压或电流,统称为正弦量电路中按正弦规律变化的电压或电流,统称为正弦量。对正弦量的数学描述,可以采用对正弦量的数学描述,可以采用sin函数,也可采用函数,也可采用cos函数。函数。但在用相量法进行分析时,要注意采用的是哪一种形式,但在用相量法进行分析时,要注意采用的是哪一种形式,不不要两者同时混用要两者同时混用。本书采用。本书采用cos函数。函数。2.2.正弦量的三要素正弦量的三要素iu+_设右图中正弦电流设右图中正弦电流 i 的数学表达式为的数学表达式为) cos(imtIi 则式中的则式中的 3 3 个常数个常数Im、和和i ,称为正弦量的三要素。,称为正弦量的三要素。 1)1)振幅振幅ImIm 称为正弦量的振幅,亦即正弦量的最大值称为正弦量的振幅,亦即正弦量的最大值imaxmax。1) cos( it当时,正弦量有最小值时,正弦量有最小值iminmin= =Im。imaximin=2=2Im 称为正弦量的峰峰值。称为正弦量的峰峰值。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分2)2)角频率角频率 随时间变化的角度随时间变化的角度( (t +i) )为正弦量的相位(或相角)。为正弦量的相位(或相角)。为正弦量的为正弦量的角频率角频率,是正弦量的相位随时间变化的角速度,即,是正弦量的相位随时间变化的角速度,即) (itdtd 角频率的单位为角频率的单位为 rad/s。它与正弦量的周期。它与正弦量的周期 T 和频率和频率 f 之间之间的关系为:的关系为:, 2 T, 2 f Tf/1 频率频率 f 的单位为的单位为1/1/s,称为,称为Hz( (赫兹赫兹) )。我国工业用电的频率。我国工业用电的频率为为5050Hz。 正弦量在正弦量在 t = 0 时刻的相位,称为正弦量的时刻的相位,称为正弦量的初相位初相位,简称,简称初相初相。即。即itit 0) (3)3)初相初相( (位位) )i 初相的单位用弧度或度表示,通常取初相的单位用弧度或度表示,通常取| i |1801800 0。它与计时。它与计时零点有关。对任一正弦量,初相是允许任意指定的,但对于一零点有关。对任一正弦量,初相是允许任意指定的,但对于一个电路中的许多相关的正弦量,它们只能相对于一个共同的计个电路中的许多相关的正弦量,它们只能相对于一个共同的计时零点确定各自的相位。时零点确定各自的相位。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分正弦量的三要素是正弦量之间进行比较和区分的依据。正弦量的三要素是正弦量之间进行比较和区分的依据。3.3.正弦波正弦波正弦量随时间变化的图形称为正弦波。正弦量随时间变化的图形称为正弦波。 2OIm) cos(tIim t 2OIm) cos(tIim t )0( i OIm) cos(imtIi t 2 2i )0( i 2)0( i 2OIm) cos(imtIi t 2i 4.4.正弦量的重要性质正弦量的重要性质 正弦量乘以常数,正弦量的微分、积分,同频率正弦量正弦量乘以常数,正弦量的微分、积分,同频率正弦量的代数和等运算,其结果仍为一个的代数和等运算,其结果仍为一个同频率的正弦量同频率的正弦量。例如。例如)90 cos() sin() cos(o imimimtItItIdtddtdi 变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分5. .正弦量的有效值正弦量的有效值 工程中常将周期电流或电压在一个周期内产生的平均效应工程中常将周期电流或电压在一个周期内产生的平均效应换算为在效应上与之相等的直流量,以衡量和比较周期电流或换算为在效应上与之相等的直流量,以衡量和比较周期电流或电压的效应,这一直流量就称为电压的效应,这一直流量就称为周期量的有效值周期量的有效值,用相对应的,用相对应的大写字母表示。其定义如下:大写字母表示。其定义如下: 周期量的有效值等于其瞬时值的平方在一个周期内积分周期量的有效值等于其瞬时值的平方在一个周期内积分的平均值再取平方根的平均值再取平方根。对周期电流有对周期电流有 TdtiTI021 TimdttITI022) (cos1 当电流当电流 i 有为正弦量时,有有为正弦量时,有 TimdttIT022) (2cos11 mmmTmIIIdtIT707. 022121202 变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分mmIII707. 02/ 上式表明,上式表明,正弦量的最大值与其有效值之间有正弦量的最大值与其有效值之间有 倍的倍的关系关系,且正弦量的有效值与正弦量的频率和初相无关。正弦,且正弦量的有效值与正弦量的频率和初相无关。正弦量量 i 常写成如下形式:常写成如下形式:2) cos(2itIi 则式中的则式中的3 3个常数个常数I、i 也称为正弦量的三要素。工程也称为正弦量的三要素。工程中使用的交流电气设备铭牌上标出的额定电流、电压的数值,中使用的交流电气设备铭牌上标出的额定电流、电压的数值,交流电流表、电压表表面上标出的数字都是有效值。交流电流表、电压表表面上标出的数字都是有效值。 6.6.两个同频率正弦量之间的相位差两个同频率正弦量之间的相位差设两个同频率正弦量设两个同频率正弦量 u 和和 i 分别为:分别为:) cos(2itIi ) cos(2utUu 两个同频率正弦量之间的相位差等于它们相位相减的结果两个同频率正弦量之间的相位差等于它们相位相减的结果,在主值范围内取值。设在主值范围内取值。设表示电压表示电压 u 和电流和电流 i 之间的相位差。之间的相位差。则则 变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分iuiutt ) () ( 上式表明,同频率正弦量的相位差等于它们的初相之差,上式表明,同频率正弦量的相位差等于它们的初相之差,为一个与时间无关的常数。电路中常采用为一个与时间无关的常数。电路中常采用“超前超前”和和“滞后滞后”来说明两个同频率正弦量相位比较的结果。来说明两个同频率正弦量相位比较的结果。) cos(2itIi ) cos(2utUu 。,) ( 0 uiiu滞滞后后或或称称 超超前前则则称称若若。,) ( 0 uiiu超超前前或或称称 滞滞后后则则称称若若。,同同相相和和则则称称若若 0 iu。,反反相相和和则则称称若若 | iu。,正正交交和和则则称称若若 2/| iu 同频率正弦量的相位差可通过观察波形确定,在同一个周期同频率正弦量的相位差可通过观察波形确定,在同一个周期内两个波形的极大值内两个波形的极大值( (或极小值或极小值) )之间的角度值之间的角度值(180(1800 0) ),即为两,即为两者的相位差。超前者先达到极值点。相位差与计时零点的选取、者的相位差。超前者先达到极值点。相位差与计时零点的选取、变动无关。变动无关。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分iu,uit Oiu,uit O 试分析图中各量试分析图中各量的相位关系。的相位关系。 iu 超前超前同相同相和和 iu变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分8-3 相量法的基础相量法的基础 在线性电路中,如果激励是正弦量,则电路中各支路的电在线性电路中,如果激励是正弦量,则电路中各支路的电压和电流的稳态响应将是同频率的正弦量。如果电路有多个激压和电流的稳态响应将是同频率的正弦量。如果电路有多个激励且都是同一频率的正弦量,则根据线性电路的叠加性质可知,励且都是同一频率的正弦量,则根据线性电路的叠加性质可知,电路全部稳态响应都将是同一频率的正弦量。处于这种稳定状电路全部稳态响应都将是同一频率的正弦量。处于这种稳定状态的电路称为态的电路称为正弦稳态电路正弦稳态电路,又称,又称正弦电流电路正弦电流电路。相量法是分析求解正弦电流电路稳态响应的一种有效工具。相量法是分析求解正弦电流电路稳态响应的一种有效工具。1.1.相量的概念相量的概念为例为例以以 ) cos(2 itIi) cos(2itIi ) sin(2) cos(2ReiitIjtI 2Re) (itjIe 2 tjjeIeRei 可以看出,一个实数范围内的正弦量可以和一个复数范可以看出,一个实数范围内的正弦量可以和一个复数范围内的复指数函数一一对应起来。上式复指数函数中的围内的复指数函数一一对应起来。上式复指数函数中的 是以正弦量的有效值为模,以初相为辐角的一个复常数,定是以正弦量的有效值为模,以初相为辐角的一个复常数,定义其为正弦量义其为正弦量 i 的相量,记为的相量,记为 jIei iI变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分ijIIeIi 正弦量的正弦量的有效值相量有效值相量imjmmIeIIi 正弦量的正弦量的振幅相量、最大值相量振幅相量、最大值相量注意:注意:l正弦量的相量和它时域内的函数表达式是一一对应的关系,正弦量的相量和它时域内的函数表达式是一一对应的关系,不是相等的关系。不是相等的关系。l若已知正弦量的时域表达式,可直接写出与之对应的相量。若已知正弦量的时域表达式,可直接写出与之对应的相量。l若已知正弦量的相量,须再知道其角频率才可写出与之对应若已知正弦量的相量,须再知道其角频率才可写出与之对应的函数表达式。的函数表达式。)35 cos(2220o ti o35220 Io60100 U rad/s 100 )tcos(uo60 100 2100 l相量是个复数,它在复平面上的图形称为相量图。相量是个复数,它在复平面上的图形称为相量图。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分o+j+1Ii I2.2.旋转相量旋转相量 与正弦量相对应的复指数函数在复与正弦量相对应的复指数函数在复平面上可以用旋转相量表示出来。其中平面上可以用旋转相量表示出来。其中复常数复常数 称为旋转相量的复振幅,称为旋转相量的复振幅,e jt 是一个随时间变化而以角速度是一个随时间变化而以角速度 不不断逆时针旋转的因子。复振幅乘以旋转断逆时针旋转的因子。复振幅乘以旋转因子因子e jt 即表示复振幅在复平面上不断即表示复振幅在复平面上不断逆时针旋转,故称之为逆时针旋转,故称之为旋转相量旋转相量。这就。这就是复指数函数的几何意义。是复指数函数的几何意义。iI 22Ret jjeIeii变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分3.3.相量的运算相量的运算 正弦量乘以常数,正弦量的微分、积分及同频率正弦量的正弦量乘以常数,正弦量的微分、积分及同频率正弦量的代数和等运算,其结果仍为一个代数和等运算,其结果仍为一个同频率的正弦量同频率的正弦量。其相应的相。其相应的相量运算如下:量运算如下:1)1)同频率正弦量的代数和同频率正弦量的代数和, ) cos(2) cos(2 222111iitIitIi设设设它们的代数和为正弦量设它们的代数和为正弦量 i ,则,则 2Re2Re 2 12121tjjtjjeeIeeIiiiii 2Re2Re 2 1tjtjeIeI )(2Re 21tjeII 2Re2Re tjtjjeIeIeii 21III)(2Re2Re 21 tjtjeIIeI 上式在任何时刻都成立,则有上式在任何时刻都成立,则有变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分2) )正弦量的微分正弦量的微分则则设设, ) cos(2 itIi2Re tjeIdtddtdi )2(Re tjeIdtd ) (2Re tjeIj 2Re)90 (o itjIe )90 cos( 2o itI 上式表明上式表明:u复指数函数实部的导数等于复指数函数导数的实部;复指数函数实部的导数等于复指数函数导数的实部;u正弦量的导数是一个同频率的正弦量,其相量等于原正弦正弦量的导数是一个同频率的正弦量,其相量等于原正弦量的相量乘以量的相量乘以 j ,即表示,即表示di/ /dt 的相量为的相量为)90( o iIIj 该相量的模为该相量的模为I ,辐角则超前原相量,辐角则超前原相量/2 。u对对 i 的高阶导数的高阶导数 dni/ /dtn ,其相量为,其相量为 。Ijn) ( 变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分3) )正弦量的积分正弦量的积分则则设设, ) cos(2 itIidteIidttj 2Re )2(Re dteItj ) (2Re tjejI 2Re)90 (o itjeI )90 cos( 2o itI 上式表明上式表明:复指数函数实部的积分等于复指数函数积分的实部;复指数函数实部的积分等于复指数函数积分的实部;)90( oiIjI该相量的模为该相量的模为 I / / ,辐角则滞后原相量,辐角则滞后原相量/2 。对对 i 的的 n 重积分,其相量为重积分,其相量为 。njI) /( 正弦量的积分结果为同频率的正弦量,其相量等于原正弦量正弦量的积分结果为同频率的正弦量,其相量等于原正弦量的相量除以的相量除以 j ,即表示,即表示 的相量为的相量为 idt变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分例例1 1 已知:两个同频率的正弦电流分别为已知:两个同频率的正弦电流分别为AtiAti)150 314cos(222 )60 314cos(210o2o1,dtidtdiii2121 )3( / )2( ) 1 ( ;:试试相相量量法法求求解:解: ) 314cos(2 ) 1 (21iiIIAtIiii其其相相量量为为依依题题意意设设,AIII )54.170(24.14)150(226010 ooo21则则 )54.170 314cos(224.14 oAti故故iiIIAtIdtdii ) 314cos(2/ )2(1其其相相量量为为依依题题意意设设,)9060(31406010314 ooo1jIjI则则Atti )150 314cos(23140)9060 314cos(23140 ooo故故iiIIAtIdtii ) 314cos(2 ) 3(2其其相相量量为为依依题题意意设设,ooo212007. 090314)150(22 jII则则 )120 314cos(207. 0 oAti故故变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分8-4 电路定律的相量形式电路定律的相量形式1.1.相量形式的基尔霍夫定律相量形式的基尔霍夫定律正弦电流电路中的各支路电流和支路电压都是同频率正弦量。正弦电流电路中的各支路电流和支路电压都是同频率正弦量。对电路中的任一结点对电路中的任一结点( (或闭合面或闭合面) ),在时域内有,在时域内有KCL方程:方程:0 i0 IKCL方程的相量形式方程的相量形式对电路中任一回路对电路中任一回路( (或闭合结点序列或闭合结点序列) ),在时域内有,在时域内有KVL方程:方程:0 u0 UKVL方程的相量形式方程的相量形式变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分2.2.基本元器件的相量模型及其相量形式的电压电流关系基本元器件的相量模型及其相量形式的电压电流关系1)1)电阻元件电阻元件RRiRu+_RRIRU+_) cos(2iRRRtRIRiu ) cos(2 iRRtIi令令) cos(2uRtU RRIRU ) cos(2uRRtUu 则对电阻支路,在时域内有则对电阻支路,在时域内有iRRII uRRUU iRuRRIU 幅值关系幅值关系RRRIU 相位关系相位关系iu ( (电压与电流同相电压与电流同相) )电阻元件的相量模型电阻元件的相量模型o+j+1RIi RUu 电阻元件的相量图电阻元件的相量图变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分LLILjU 2)2)电感元件电感元件) cos(2iLLLtIdtdLdtdiLu ) cos(2 iLLtIi 令令) cos(2uLtU ) cos(2uLLtUu 则对电感支路,在时域内有则对电感支路,在时域内有iLLII uLLUU )90( o iLuLLIU 幅值关系幅值关系LLLIU 相位关系相位关系o90 iu ( (电压超前电流电压超前电流/2)/2) sin(2iLtLI )90 cos(2o iLtLI LLiLu+_电感元件的相量模型电感元件的相量模型Lj LILU+ +_ _电感元件的相量图电感元件的相量图o o+j+j+ +1 1LIi LUu L 的量纲与电阻相同,为欧姆的量纲与电阻相同,为欧姆( ( ) )。=0 时,时,L=0=0,此时电感相当于短路。,此时电感相当于短路。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分CCUCjI 3)3)电容元件电容元件) cos(2uCCCtudtdCdtduCi ) cos(2iCCtIi ) cos(2iCtI ) cos(2 uCCtUu令令则对电容支路,在时域内有则对电容支路,在时域内有iCCII uCCUU )90( o uCiCCUI 幅值关系幅值关系CCCUI 相位关系相位关系o90 ui ( (电流超前电压电流超前电压/2)/2) sin(2uCtCU )90 cos(2o uCtCU 电容元件的相量图电容元件的相量图o o+j+j+ +1 1CIi CUu CCiCu+_电容元件的相量模型电容元件的相量模型Cj 1CICU+ +_ _1/(1/(C ) )的量纲与电阻相同,为欧姆的量纲与电阻相同,为欧姆( ( ) )。=0 时,时,1/(1/(C ),此时电容相当于,此时电容相当于开路。开路。变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分4)4)受控源受控源 如果线性受控源的控制电压或电流是正弦量,则受控源如果线性受控源的控制电压或电流是正弦量,则受控源的电压或电流将是同一频率的正弦量。例如,的电压或电流将是同一频率的正弦量。例如,)( VCCSguikj ku+_jikU+_jI)( VCCSUgIkj )( CCVSriukj ju+_ki)( CCVSI rUkj jU+_kI变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分RjLsIabcdCj 1I+_+_+_RULUCURLsiabcdCi+_+_+_RuLuCu例例2:2:已知右图正弦电流源已知右图正弦电流源 is 的有效的有效值为值为5 5A,=1000 =1000 rad/s,R=3=3,L=1=1H,C=1=1F。求。求uadad和和 ubdbd。解:解:画出相量形式的电路图。画出相量形式的电路图。设电路的电流相量为设电路的电流相量为参考相量参考相量,即,即AIIso05 VIRURo015 VILjULo905000 VICjUC)90(50001o 则则0 CLbdUUUVUUUbdRado015 0 bduVtuad)1000cos(215 变电站电气主接线是指变电站的变压器、输电线路怎样与电力系统相连接,从而完成输配电任务。变电站的主接线是电力系统接线组成中一个重要组成部分RjL1ICj 15I+_sUA5A1A2A3A44I2I3I例例3:3:已知右图中各电流表都是交已知右图中各电流表都是交流电流表,其读数为电流的有效流电流表,其读数为电流的有效值。电流表值。电流表1、2、3的读数依次为的读数依次为 5A、20A、25A。求电流表。求电流表4、5的的读数。读数。解:解: 选并联电压相量为参考相量选并联电压相量为参考相量则则 即令即令,VUUsso0 AAI505o1 AjAI20)90(20o2 AjAI259025o3 AAjIIIIo32154507. 755 AAjIIIo3249055 所以,电流表所以,电流表4 4的读数为的读数为5A;电流表;电流表5 5的读数为的读数为7.07A。

    注意事项

    本文(电路分析相量法ppt课件.ppt)为本站会员(飞****2)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开