欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    新编高考-文科数学导数全国卷(2012-2018年度).doc

    • 资源ID:2796124       资源大小:710.42KB        全文页数:12页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    新编高考-文科数学导数全国卷(2012-2018年度).doc

    #+导数高考题专练1、(2012课标全国,文21)(本小题满分12分)设函数f(x)= exax2()求f(x)的单调区间()若a=1,k为整数,且当x>0时,(xk) f(x)+x+1>0,求k的最大值2、 (2013课标全国,文20)(本小题满分12分)已知函数f(x)ex(axb)x24x,曲线yf(x)在点(0,f(0)处的切线方程为y4x4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值3、 (2015课标全国,文21).(本小题满分12分) 设函数.()讨论的导函数零点的个数;()证明:当时,。4、(2016课标全国,文21)(本小题满分12分)已知函数.(I)讨论的单调性;(II)若有两个零点,求的取值范围.5、((2016全国新课标二,20)(本小题满分12分) 已知函数.(I)当时,求曲线在处的切线方程; (II)若当时,求的取值范围.6(2016山东文科。20)(本小题满分13分)设f(x)=xlnxax2+(2a1)x,aR.()令g(x)=f(x),求g(x)的单调区间;()已知f(x)在x=1处取得极大值.求实数a的取值范围.2017.(12分)已知函数ae2x+(a2) exx.(1)讨论的单调性;(2)若有两个零点,求a的取值范围.2018全国卷)(12分)已知函数讨论的单调性;若存在两个极值点,证明:导数高考题专练(答案)12解:(1)f(x)ex(axab)2x4.由已知得f(0)4,f(0)4.故b4,ab8.从而a4,b4.(2)由(1)知,f(x)4ex(x1)x24x,f(x)4ex(x2)2x44(x2).令f(x)0得,xln 2或x2.从而当x(,2)(ln 2,)时,f(x)0;当x(2,ln 2)时,f(x)0.故f(x)在(,2),(ln 2,)上单调递增,在(2,ln 2)上单调递减当x2时,函数f(x)取得极大值,极大值为f(2)4(1e2)34 (I)(i)设,则当时,;当时,.所以在单调递减,在单调递增. (ii)设,由得x=1或x=ln(-2a).若,则,所以在单调递增.若,则ln(-2a)<1,故当时,;当时,所以在单调递增,在单调递减.若,则,故当时,当时,所以在单调递增,在单调递减.(II)(i)设,则由(I)知,在单调递减,在单调递增.又,取b满足b<0且,则,所以有两个零点.(ii)设a=0,则所以有一个零点.(iii)设a<0,若,则由(I)知,在单调递增.又当时,<0,故不存在两个零点;若,则由(I)知,在单调递减,在单调递增.又当时<0,故不存在两个零点.综上,a的取值范围为.5试题解析:(I)的定义域为.当时,曲线在处的切线方程为(II)当时,等价于令,则,(i)当,时,故在上单调递增,因此;(ii)当时,令得,由和得,故当时,在单调递减,因此.综上,的取值范围是6试题分析:()求导数 可得,从而,讨论当时,当时的两种情况即得. ()由()知,.分以下情况讨论:当时,当时,当时,当时,综合即得.试题解析:()由 可得,则,当时, 时,函数单调递增;当时, 时,函数单调递增, 时,函数单调递减.所以当时,函数单调递增区间为;当时,函数单调递增区间为,单调递减区间为. ()由()知,.当时,单调递减.所以当时,单调递减.当时,单调递增.所以在x=1处取得极小值,不合题意.当时,由()知在内单调递增,可得当当时,时,所以在(0,1)内单调递减,在内单调递增,所以在x=1处取得极小值,不合题意.当时,即时,在(0,1)内单调递增,在 内单调递减,所以当时, 单调递减,不合题意.当时,即 ,当时,单调递增,当时,单调递减,所以f(x)在x=1处取得极大值,合题意.综上可知,实数a的取值范围为.2017.解:(1)函数的定义域为若,则,在单调递增若,则由得当时,;当时,;故在单调递减,在单调递增若,则由得当时,;当时,;故在单调递减,在单调递增(2)若,则,所以若,则由(1)得,当时,取得最小值,最小值为,从而当且仅当,即时,若,则由(1)得,当时,取得最小值,最小值为,从而当且仅当,即时,综上,的取值范围是2018解:(1)f(x)的定义域为,f (x)=aex由题设知,f (2)=0,所以a=从而f(x)=,f (x)=当0<x<2时,f (x)<0;当x>2时,f (x)>0所以f(x)在(0,2)单调递减,在(2,+)单调递增(2)当a时,f(x)设g(x)=,则 当0<x<1时,g(x)<0;当x>1时,g(x)>0所以x=1是g(x)的最小值点故当x>0时,g(x)g(1)=0因此,当时,

    注意事项

    本文(新编高考-文科数学导数全国卷(2012-2018年度).doc)为本站会员(小**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开