2022年陕西中考关于二次函数.docx
精选学习资料 - - - - - - - - - 09 年 10依据下表中的二次函数yax2bxc的自变量 x 与函数 y 的对应值,可判定该二次函数的图象与x 轴()y 轴两侧x1012y172744A只有一个交点B有两个交点,且它们分别在C有两个交点,且它们均在y 轴同侧D无交点24(此题满分 10 分)如图,在平面直角坐标系中,OBOA ,且OB2 OA,点 A 的坐标是 12, (1)求点 B 的坐标;(2)求过点 A、O、B的抛物线的表达式;P ,使得SABPSABO(3)连接 AB ,在( 2)中的抛物线上求出点y A 1 B O 1 x (第 24 题图)10 年 10.将抛物线 C:y=x2+3x-10,将抛物线 C 平移到 C ;如两条抛物线C,C 关于直线 x=1 对称,就以下平移方法中正确选项(C)A 将抛物线 C 向右平移5 2个单位B 将抛物线 C 向右平移 3 个单位C 将抛物线 C 向右平移 5 个单位D 将抛物线 C 向右平移 6 个单位名师归纳总结 - - - - - - -第 1 页,共 6 页精选学习资料 - - - - - - - - - 24如图,在平面直角坐标系中,抛物线(1)求该抛物线的表达式;A(-1,0 ),B(3,0 )C(0,-1 )三点;(2)点 Q在 y 轴上,点 P 在抛物线上,要使 Q、P、A、B 为顶点的四边形是平行四边形求全部满意条件点 P的坐标;11 年 10、如二次函数 y x 26 x c 的图像过 A ,1 Y 1 , B 2 , Y 2 , C 3 2 , Y 3 ,就y 1,y2,y3的大小关系是y2()y1y2y3C、y2y1y3D、y3A、y 1y2y3B、y 124(此题满分 10 分)1 3x的图像经过AOC 的三个顶点,其中A-1 ,如图,二次函数y2x2 3m,Bn,n 1 求 A、B 的坐标名师归纳总结 2 在坐标平面上找点C,使以 A、O、B、C 为顶点的四边形是平行四边形第 2 页,共 6 页- - - - - - -精选学习资料 - - - - - - - - - 、这样的点 C 有几个?、能否将抛物线 y 2 x 2 1 x 平移后经过 A、C 两点,如能求出平移3 3后经过 A、C 两点的一条抛物线的解析式;如不能,说明理由;212 年 10在平面直角坐标系中,将抛物线 y x x 6 向上(下)或向左(右)平移了 m 个单位,使平移后的抛物线恰好经过原点,就m 的最小值为()A1 B2 C3 D6 24(此题满分 10 分)假如一条抛物线y ax2+bx c a0与 x 轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形 ”名师归纳总结 (1)“抛物线三角形 ” 肯定是三角形;第 3 页,共 6 页(2)如抛物线y=-x2+bx b >0的“抛物线三角形 ”是等腰直角三角形,求b 的值;(3)如图,OAB 是抛物线y=-2 x+ ' bx b '>0的“抛物线三角形 ”,是否存在以原点 O 为对称中心的矩形ABCD ?如存在,求出过 O、 、D三点的抛物线的表达- - - - - - -精选学习资料 - - - - - - - - - 式;如不存在,说明理由13 年 10. 已知两点 A( 5,y )、B(3,y )均在抛物线yax2bxca0)上,点 C(x ,y )是该抛物线的顶点, 如y y y ,就x 的取值范畴是(A. x 5 B. x 1 C. 5x 1 D. 2x 3 24. (此题满分 10 分)在平面直角坐标系中,一个二次函数的图象经过 A(1,0)、B(3,0)两点 . (1) 写出这个二次函数图象的对称轴;(2) 设这个二次函数图象的顶点为D,与 y 轴交于点 C,它的对称轴与 x 轴交于点 E,连接 AC、DE 和 DB.当 AOC 与 DEB 相像时,求这个函数的 表达式 .4 y3 2432111234xO123414 年 10、二次函数yax2bxca0的图象如下列图,名师归纳总结 就以下结论正确选项()c3 b第 4 页,共 6 页A、 c .-1 B、b.0 C、2 ab0D、9a2- - - - - - -精选学习资料 - - - - - - - - - 24、(此题满分 10 分)已知抛物线 C:yx2bxc经过 A-3 ,0和 B0,3两点,将抛物线的顶点记为 M,它的对称轴与 x 轴的交点记为 N. 1求抛物线 C 的表达式;(2)求点 M 的坐标;(3)将抛物线 C 平移到抛物线 C ,抛物线 C的顶点记为 M 、它的对称轴 与 x 轴的交点记为 N ;假如点 M、N、M 、N为顶点的四边形是面积为 16 的平行四边形,那么应将抛物线C 怎样平移?为什么?15 年 10. 以下关于二次函数 y ax 2 2 ax 1 a1)的图象与 x 轴交点的判定,正确的是()A. 没有交点 B. 只有一个交点,且它位于 y 轴右侧C.有两个交点,且它们均位于 y 轴左侧 D. 有两个交点,且它们均位于 y 轴右侧24.(此题满分 10 分)在平面直角坐标系中,抛物线 y=x 2 +5x+4 的顶点为 M,与x 轴交于 A、B两点,与 y 轴交于 C点;(1)求点 A、B、C的坐标;名师归纳总结 - - - - - - -第 5 页,共 6 页精选学习资料 - - - - - - - - - (2)求抛物线 y=x2 +5x+4 关于坐标原点 O对称的抛物线的函数表达式;(3)设( 2)中所求抛物线的顶点为 M, 与 x 轴交于 A、B两点,与 y 轴交于 C点,在以 A、B、C、M、A、B、C、M这八个点中的四个点为顶点的平行四边形中,求其中一个不是菱形的平行四边形的面积;16 年10. 已知抛物线 y x 2 2 x 3 与 x 轴交于 A、B两点,将这条抛物线的定点记为C,连接 AC、BC,就 tan CAB的值为【】A. 1 B. 5 C. 2 5 D. 22 5 524. (此题满分 10 分)如图,在平面直角坐标系中,点yax2bx5O 为坐标原点,抛物线经过点 M(1,3 )和 N(3,5 ),与 x 轴交于 A、B 两点,与 y 轴交于 C点;(1)试判定抛物线与 x 轴交点的情形;(2)平移这条抛物线,使平移后的抛物线经过A(-2,0 )且与 y 轴的交点为B同时满意以 A、O、B 为顶点的三角形是等腰直角三 角形 . 请写出平移的过程,并说明理由;名师归纳总结 - - - - - - -第 6 页,共 6 页