欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    知识材料讲解-导数的计算-学习基础(1).doc

    • 资源ID:2803707       资源大小:568.46KB        全文页数:10页
    • 资源格式: DOC        下载积分:8金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要8金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    知识材料讲解-导数的计算-学习基础(1).doc

    +导数的计算【学习目标】 1. 牢记几个常用函数的导数公式,并掌握其推导过程。2. 熟记八个基本初等函数的导数公式,并能准确运用。3. 能熟练运用四则运算的求导法则, 4. 理解复合函数的结构规律,掌握求复合函数的求导法则:“由外及内,层层求导”【要点梳理】知识点一:基本初等函数的导数公式(1)(C为常数),(2)(n为有理数),(3),(4),(5),(6),(7),(8), 。要点诠释:1常数函数的导数为0,即C=0(C为常数)其几何意义是曲线(C为常数)在任意点处的切线平行于x轴 2有理数幂函数的导数等于幂指数n与自变量的(n1)次幂的乘积,即(nQ)特别地,。 3正弦函数的导数等于余弦函数,即(sin x)=cos x 4余弦函数的导数等于负的正弦函数,即(cos x)=sin x5指数函数的导数:,6对数函数的导数:,有时也把 记作: 以上常见函数的求导公式不需要证明,只需记住公式即可 知识点二:函数的和、差、积、商的导数运算法则:(1)和差的导数:(2)积的导数:(3)商的导数:()要点诠释: 1. 上述法则也可以简记为: ()和(或差)的导数:, 推广: ()积的导数:, 特别地:(c为常数) ()商的导数:, 两函数商的求导法则的特例 , 当时, 这是一个函数倒数的求导法则 2两函数积与商求导公式的说明(1)类比:,(v0),注意差异,加以区分 (2)注意:且(v0) 3求导运算的技巧 在求导数中,有些函数虽然表面形式上为函数的商或积,但在求导前利用代数或三角恒等变形可将函数先化简(可能化去了商或积),然后进行求导,可避免使用积、商的求导法则,减少运算量知识点三:复合函数的求导法则 1复合函数的概念 对于函数,令,则是中间变量u的函数,是自变量x的函数,则函数是自变量x的复合函数 要点诠释: 常把称为“内层”, 称为“外层” 。2复合函数的导数 设函数在点x处可导,函数在点x的对应点u处也可导,则复合函数在点x处可导,并且,或写作3掌握复合函数的求导方法 (1)分层:将复合函数分出内层、外层。(2)各层求导:对内层,外层分别求导。得到(3)求积并回代:求出两导数的积:,然后将,即可得到 的导数。要点诠释: 1. 整个过程可简记为分层求导回代,熟练以后,可以省略中间过程。若遇多重复合,可以相应地多次用中间变量。2. 选择中间变量是复合函数求导的关键。求导时需要记住中间变量,逐层求导,不遗漏。求导后,要把中间变量转换成自变量的函数。【典型例题】类型一:求简单初等函数的导数例1. 求下列函数的导数: (1) (2) (3)(4)(5)【解析】(1) (x3)=3x31=3x2; (2) ()=(x2)=2x21=2x3(3) (4);(5);【点评】(1)用导数的定义求导是求导数的基本方法,但运算较繁。利用常用函数的导数公式,可以简化求导过程,降低运算难度。(2)准确记忆公式。(3)根式、分式求导时,先将根式、分式转化为幂的形式。举一反三:【变式】求下列函数的导数:(1)y = (2)y = (3)y=2x33x2+5x4 (4); 【答案】 (1) y=()=(x3)=3x31=3x4(2(3)(4),.类型二:求函数的和、差、积、商的导数例2. 求下列函数导数: (1) y3x2xcosx; (2)y; (3)ylgxex;(4)y=tanx.【解析】 (1)y6xcosxxsinx.(2)y.(3)y(lgx)(ex)ex.(4)=tanx+.【点评】(1)熟记基本初等函数的导数公式和灵活运用导数的四则运算法则,是求导函数的前提。(2)先化简再求导,是化难为易,化繁为简的基本原则和策略。举一反三:【变式1】函数在处的导数等于( )A1 B2 C3 D4【答案】D法一: .法二:.【变式2】 求下列各函数的导函数(1)y=(x+1)(x+2)(x+3)。 (2)y=x2sinx; (3)y=【答案】(1)y=(x2+3x+2)(x+3)=x3+6x2+11x+6,y=3x2+12x+11。(2)y=(x2)sinxx2(sinx)=2xsinxx2cosx(3)=【变式3】求下列函数的导数.(1) y (2 x25 x 1)ex; (2);(3) y 【答案】(1) y(2 x25 x 1)e x (2 x25 x 1) (e x )(4 x 5)e x (2 x 25 x 1)e x (2x 2x 4)ex(2),.(3)y(sin x x cos x)(cos x x sin x)(sin x x cos x)(cos x x sin x)(cos x cos x x sin x) (cos x x sin x)(sin x x cos x) (x cos x)类型三:求复合函数的导数例3求下列函数的导数:(1); (2);(3); 【解析】 (1)设=1-3x,则 。 (2)设,y=cos,则 。(3)设【点评】 把一部分量或式子暂时当作一个整体,这个整体就是中间变量。求导数时需要记住中间变量,注意逐层求导,不能遗漏。求导数后,要把中间变量转换成自变量的函数。举一反三:【变式】 求下列函数导数. (1); (2); (3).【答案】(1), (2),.(3),.例4 求下列函数导数. (1); (2); (3)【解析】 (1) 令,(2) 。(3)设,=sinv,则 在熟练掌握复合函数求导以后,可省略中间步骤: 【点评】 (1)复合函数求导数的步骤是:分清复合关系,适当选定中间变量,正确分解复合关系(简称分解复合关系);分层求导,弄清每一步中哪个变量对哪个变量求导数(简称分层求导);将中间变量代回为自变量的函数。简记为分解求导回代,当省加重中间步骤后,就没有回代这一步了,即分解(复合关系)求导(导数相乘)。(2)同一个问题可有多种不同的求导方法,若能化简的式子,则先化简,再求导。举一反三:【变式1】 求y sin4x cos 4x的导数【答案】解法一 y sin 4x cos 4x(sin2x cos2x)22sin2cos2x1sin22 x1(1cos 4 x)cos 4 xysin 4 x解法二 y(sin 4 x)(cos 4 x)4 sin 3 x(sin x)4 cos 3x (cos x)4 sin 3 x cos x 4 cos 3 x (sin x)4 sin x cos x (sin 2 x cos 2 x)2 sin 2 x cos 2 xsin 4 x【变式2】求下列函数导数:(1); (2)求函数的导数()。【答案】 (1)设u=12x2,则。 。(2)方法一: 。方法二:, 。类型四:利用导数求函数式中的参数例5 (1),若,则a的值为( )A B C D(2)设函数,若是奇函数,则=_。【解析】 (1),故选A。(2)由于,若是奇函数,则,即,所以。又因为,所以。【点评】 求函数的导数的基本方法是利用函数的和、差、积、商的导数运算法则以及复合函数的导数运算法则,转化为常见函数的导数问题,再利用求导公式来求解即可。举一反三:【变式1】已知函数过点(1,5),其导函数的图象如图3-2-1所示, 求的解析式。【答案】,由,得,解得,函数的解析式为。【变式2】已知是关于的多项式函数,(1)若,求;(2)若且,解不等式.【解析】显然是一个常数,所以所以,即所以,可设 由,解得

    注意事项

    本文(知识材料讲解-导数的计算-学习基础(1).doc)为本站会员(小**)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开