学年高中数学第二章统计..用样本的数字特征估计总体的数字特征课时作业新人教A版必修.doc
2.2.2用样本的数字特征估计总体的数字特征选题明细表知识点、方法题号众数、中位数、平均数、方差(标准差)的理解1,2,3应用频率分布直方图、表求众数、中位数、平均数4,9方差(标准差)的计算5,6,7,11,12,13茎叶图中样本数字特征8,10根底稳固1.有两位射击运发动在一次射击测试中各射靶7次,每次命中的环数如下:甲:7 8 10 9 8 8 6乙:9 10 7 8 7 7 8那么以下判断正确的选项是(D)(A)甲射击的平均成绩比乙好(B)乙射击的平均成绩比甲好(C)甲射击的成绩的众数小于乙射击的成绩的众数(D)甲射击的成绩的极差大于乙射击的成绩的极差解析:由题意得,甲射击的平均成绩为=8,众数为8,极差为4;乙射击的平均成绩为=8,众数为7,极差为3,故甲射击的平均成绩等于乙射击的平均成绩,甲射击的成绩的众数大于乙射击的成绩的众数,甲射击的成绩的极差大于乙射击的成绩的极差,应选D.2.某同学使用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此求出的平均数与实际平均数的差是(B)(A)3.5(B)-3 (C)3 (D)-0.5解析:少输入90,=3,平均数少3,求出的平均数减去实际平均数等于-3.3.一组数据从小到大排列为-1,0,4,x,6,15, 且这组数据的中位数是5,那么这组数据的众数为(B)(A)5(B)6(C)4(D)5.5解析:中位数为=5,x=6,所以众数为6.4.如图,样本A和B分别取自两个不同的总体,它们的平均数分别为和,标准差分别为sA和sB,那么(B)(A)>,sA>sB(B)<,sA>sB(C)>,sA<sB(D)<,sA<sB解析:由题图易得<10,>10,所以<,又A波动性大,B波动性小,所以sA>sB.5.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88,假设样本B数据恰好是样本A数据都加上2后所得数据,那么A,B两样本的以下数字特征对应相同的是(D)(A)众数 (B)平均数(C)中位数(D)标准差解析:众数、平均数、中位数分别为原来的加2,由标准差公式知,标准差不变.6.样本a,3,5,7的平均数是b,且a,b是方程x2-5x+4=0的两根,那么这个样本的方差是(C)(A)3(B)4(C)5(D)6解析:x2-5x+4=0的两根是1,4.当a=1时,a,3,5,7的平均数是4;当a=4时,a,3,5,7的平均数不是1.所以a=1,b=4.那么方差s2=(1-4)2+(3-4)2+(5-4)2+(7-4)2=5.7.设矩形的长为a,宽为b,其比满足ba=0.618,这种矩形给人以美感,称为黄金矩形.黄金矩形常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比拟,正确结论是(A)(A)甲批次的总体平均数与标准值更接近(B)乙批次的总体平均数与标准值更接近(C)两个批次的总体平均数与标准值接近程度相同(D)两个批次的总体平均数与标准值接近程度不能确定解析:甲批次的样本平均数为=0.617;乙批次的样本平均数为=0.613.所以可估计甲批次的总体平均数与标准值更接近,选A.8.甲、乙两篮球运发动上赛季每场比赛的得分如下:甲:12,15,24,25,31,31,36,36,37,39,44,49,50.乙:8,13,14,15,16,23,23,26,28,33,38,39,51.试比拟这两位运发动的得分水平.解:画出两人得分的茎叶图,为便于比照分析,可将茎放在中间共用,叶分列左、右两侧,如下图.从这个茎叶图可以看出,甲运发动的得分大致对称,平均得分、众数及中位数都是30多分,乙运发动的得分除一个51分外,也大致对称,平均得分、众数及中位数都是20多分.因此甲运发动发挥比拟稳定,总体得分情况比乙好.能力提升9.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如下图,假设得分值的中位数为me,众数为m0,平均值为,那么(D)(A)me=m0=(B)me=m0<(C)me<m0<(D)m0<me<解析:由题意m0=5,me=5.5,=,显然>me>m0,应选D.10.甲、乙两位同学某学科连续五次的考试成绩用茎叶图表示如下图,那么平均分数较高的是,成绩较为稳定的是. 解析:=70,=68,=×(22+12+12+22)=2,=×(52+12+12+32)=7.2.答案:甲甲11.假设数据k1,k2,k6的方差为3,那么2(k1-3),2(k2-3),2(k6-3)的方差为. 解析:设k1,k2,k6的平均数为,那么(k1-)2+(k2-)2+(k6-)2=3.而2(k1-3),2(k2-3),2(k6-3)的平均数为2(-3),那么所求方差为4(k1-)2+4(k2-)2+4(k6-)2=4×3=12.答案:1212.为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.某校使用的100只日光灯在必须换掉前的使用天数如表:天数/天151180181210211240241270271300301330331360361390灯管数/只1111820251672(1)试估计这种日光灯的平均使用寿命;(2)假设定期更换,可选择多长时间统一更换适宜?解:(1)各组的组中值分别为165,195,225,255,285,315,345,375,由此可算得这种日光灯的平均使用寿命约为165×1%+195×11%+225×18%+255×20%+285×25%+315×16%+345×7%+375×2%=267.9268(天).(2)×1×(165-268)2+11×(195-268)2+18×(225-268)2+20×(255-268)2+25×(285-268)2+16×(315-268)2+7×(345-268)2+2×(375-268)2=2 128.60.故标准差为46.估计这种日光灯的标准差约为46天,故在222314天之间统一更换较适宜.探究创新13.假设40个数据的平方和是56,平均数是,那么这组数据的方差是,标准差是. 解析:设这40个数据为x1,x2,x40,那么s2=(x1-)2+(x2-)2+(x40-)2=(+)+40×()2-2×(x1+x2+x40)=×(56+20-××40)=,所以s=.答案:- 5 -