学年高中物理第八章气体第节气体的等温变化练习含解析新人教版选修-.doc
-
资源ID:28120274
资源大小:110.54KB
全文页数:10页
- 资源格式: DOC
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
学年高中物理第八章气体第节气体的等温变化练习含解析新人教版选修-.doc
第1节气体的等温变化1知道什么是等温变化。2知道玻意耳定律是实验定律,掌握玻意耳定律的内容、表达式及适用条件。3理解气体等温变化的pV图象、p图象的物理意义。一、气体的状态参量及封闭气体压强的计算1气体的状态参量:描述气体的状态参量一般有压强、体积、温度。2实验探究二、玻意耳定律1内容:一定质量的某种气体,在温度不变的情况下,压强p与体积V成反比。2公式:pV恒量(C)或p1V1p2V2。3条件:气体的质量一定,温度不变。三、两种等温变化图象1气体等温变化的pV图象一定质量的气体发生等温变化时的pV图象如图甲所示。图线的形状为双曲线。由于它描述的是温度不变时的pV关系,因此称它为等温线。一定质量的气体,不同温度下的等温线是不同的。2p图象:一定质量的理想气体的p图象为过原点的倾斜直线,如图乙所示。判一判(1)被封闭气体的质量发生变化不影响实验结果。()(2)一定质量的某种气体,在温度不变的情况下,压强与体积成正比。()提示:(1)×(2)×课堂任务封闭气体的压强的计算1系统处于平衡状态时,求封闭气体的压强(1)连通器原理:在连通器中,同种液体(中间液体不间断)的同一水平液面上的压强是相等的。(2)在考虑与气体接触的液柱所产生的附加压强pgh时,应特别注意h是表示液面间竖直高度,不一定是液柱长度。(3)求由液体封闭的气体压强,一般选择最低液面列平衡方程。(4)求由固体封闭(如汽缸或活塞封闭)的气体压强,一般对此固体(如汽缸或活塞)进行受力分析,列出力的平衡方程。2容器加速运动时封闭气体的压强的求解容器加速运动时,封闭气体压强的计算步骤如下:(1)取封闭气体接触的液体(或活塞、汽缸)为研究对象(并不是以气体为研究对象)。(2)对研究对象进行受力分析。(气体对研究对象的作用力写成FpS形式)(3)对研究对象建立直角坐标系并进行受力分析。(4)分别在x轴和y轴上列牛顿第二定律方程。(5)解方程。例1如下图,竖直放置的U形管,左端开口,右端封闭,管内有a、b两段水银柱,将A、B两段空气柱封闭在管内。水银柱a长为10 cm,水银柱b两个液面间的高度差为5 cm,大气压强为75 cmHg,求空气柱A、B产生的压强。标准解答分别取两段水银柱a、b为研究对象,由受力平衡,求得A、B的压强。设气柱A、B产生的压强分别为pA、pB,管横截面积为S,取a水银柱为研究对象(如图甲),得pASmagp0S,而paSgh1Smag,故pASpaSp0S,所以pAp0pa75 cmHg10 cmHg65 cmHg。取水银柱b为研究对象(如图乙),同理可得pBSmbgpAS,所以pBpApb65 cmHg5 cmHg60 cmHg。完美答案65 cmHg60 cmHg封闭气体的压强的求解方法(1)容器静止或匀速运动时封闭气体压强的计算:取等压面法。根据同种液体在同一水平液面处压强相等,在连通器内灵活选取等压面。由两侧压强相等列方程求解压强。例如,图1中同一液面C、D处压强相等,那么pAp0ph。力平衡法。选与封闭气体接触的液柱(或活塞、汽缸)为研究对象进行受力分析,由F合0列式求气体压强。(2)容器加速运动时封闭气体压强的计算:当容器加速运动时,通常选与气体相关联的液柱、汽缸或活塞为研究对象,并对其进行受力分析,然后由牛顿第二定律列方程,求出封闭气体的压强。如图2所示,当竖直放置的玻璃管向上加速运动时,对液柱受力分析有:pSp0Smgma,得pp0。如下图,竖直向上放置的横截面积为S的汽缸内,有两个质量分别为m1和m2的圆柱形光滑活塞,封闭着两局部气体A与B,假设外界大气压强为p0,试求气体A的压强pA。答案见解析解析用关联物整体法:将质量分别为m1和m2的两个活塞和气柱B看做一个整体,此时气柱B对上、下活塞的压力成为内力,可不必考虑,而气柱B的重力可以忽略,于是等效于将气柱B抽去,而将活塞m1、m2视为一个整体,由该整体受力平衡即可得出:pASp0S(m1m2)g,解得pAp0。如下图,上端封闭底部相连的A、B、C三管中水银面相平,三管横截面积的关系是SA>SB>SC。管内水银上方的空气柱长度为LA<LB<LC。假设从下方通过阀门K流出少量水银(保持三管中均有水银)。那么三管中水银面的高度关系是()AA管中水银面最高 BC管中水银面最高C一样高 D条件缺乏,无法确定答案A解析未翻开阀门前,A、B、C三管中水银面相平,所以三管中封闭气体的压强相同,记作p0。假设翻开阀门K流出少量水银后,三管中水银面都降低了相同的高度h,三管中水银面仍然相平,对管中封闭气体应用玻意耳定律有:p0Lp(Lh)。解得末压强:p。此式说明p与空气柱原长L有关。因为LA<LB<LC,所以有pA<pB<pC,水银柱会向气压小处流动,稳定时三管内液面不相平,pA<pB<pC。以K为参考点,那么:pA水银ghApB水银ghBpC水银ghC。因为pA<pB<pC,所以hA>hB>hC。可见,哪个管内原来空气柱较短,后来该管水银面就较高,与管的横截面积无关。故此题应选A。课堂任务玻意耳定律利用玻意耳定律解题的根本思路1明确研究对象:根据题意,确定所研究的气体。2明确初、末状态:找出气体变化前后的初、末状态,并确定初、末状态的p、V值。3列方程求解:因为是比例式,计算中只需使同一物理量的单位统一即可,不一定用国际单位制中的单位。4检验结果:有时列方程求解会得到两个结果,应通过合理性的检验决定取舍。(1)公式pVC中的常量C不是一个普适常量,它与气体所处的温度上下有关,温度越高,常量C越大。(2)应用玻意耳定律解决等温变化的问题时,一定要先确定好两个状态的体积和压强。例2如下图,在温度不变的情况下,把一根长为100 cm,上端封闭的玻璃管竖直插入水银槽中,插入后管口到槽内水银面的距离是管长的一半,假设大气压为75 cmHg,求水银进入管内的长度。标准解答研究玻璃管内被封闭的空气柱。初态:玻璃管未插入水银槽之前,p1p075 cmHg;V1LS100·S cm3,末态:玻璃管插入水银槽后,设管内外水银面高度差为h,那么p2p0ph(75h) cmHg,V2S(50h)S cm3,根据玻意耳定律p1V1p2V2得75×100S(75h)(50h)S,即h2125h37500,解得h25 cm(h150 cm舍去),所以,水银进入管内的长度为h cm25 cm。完美答案25 cm变质量问题分析解析变质量问题时,可以通过巧妙地选择适宜的研究对象,使这类问题转化为一定质量的气体问题,用气体定律方程求解。(1)打气问题向球、轮胎中充气是一个典型的变质量的气体问题。只要选择球内原有气体和即将打入的气体作为研究对象,就可把充气过程中的气体质量变化的问题转化为定质量气体的状态变化问题。(2)抽气问题沉着器内抽气的过程中,容器内的气体质量不断减小,这属于变质量问题。我们可以将每次抽气过程中抽出的气体和剩余气体作为研究对象,质量不变,故抽气过程看做是等温膨胀过程。(3)灌气问题将一个大容器里的气体分装到多个小容器中的问题也是一个典型的变质量问题。解决这类问题时,可以把大容器中的气体和多个小容器中的气体看做整体来作为研究对象,可将变质量问题转化为定质量问题。(4)漏气问题容器漏气过程中气体的质量不断发生变化,属于变质量问题。如果选容器内剩余气体和漏出的气体为研究对象,便可使问题变成一定质量的气体状态变化,可用气体定律方程求解。输液时,不小心将2立方厘米气体注入血液,在血液中气体的体积多大?(气体按等温变化处理,且人的血压按120 mmHg,大气压按760 mmHg进行计算)答案1.7 cm3解析由于人的皮肤破了,血液向外流,故人体内的压强肯定大于大气压。人的血压值是其压强的绝对值减去大气压强之后的数值,所以空气进入体内后受的压强变大,p2120 mmHg760 mmHg880 mmHg,由p1V1p2V2,又p1760 mmHg,V12 cm3,解出V21.7 cm3。如下图,某压缩式喷雾器的贮液桶的容量是5.7×103 m3,往桶内倒入4.2×103 m3的药液后开始打气,打气过程中药液不会向外喷出。如果每次能打进2.5×104 m3的空气,要使喷雾器内空气的压强到达4.0×105 Pa,应打几次气?这个压强能否使喷雾器内的药液全部喷完?(设大气压强为1.0×105 Pa)答案18次能解析设大气压强为p0,每次打入的气体在大气压下的体积为V,贮液桶中空气体积为V,要使其压强到达4.0×105 Pa4p0,需打n次气。根据玻意耳定律可得: p0Vp0nV4p0V。式中p01.0×105 Pa,V2.5×104 m3,V(5.74.2)×103 m3。将数据代入上式中,解得n18次。当翻开喷液口时,如果药液能全部喷出,那么空气充满整个桶,这时桶内空气压强为p,那么:4p0Vp×5.7×103。代入V值,解得p1.053p0。可见,由于p>p0,因此药液可以全部喷出。课堂任务pV图象与p 图象的应用pV图象及p图象上等温线的物理意义1一定质量的气体,其等温线是双曲线,双曲线上的每一个点均表示一定质量的气体在该温度下的一个状态,而且同一条等温线上每个点对应的p、V坐标的乘积都是相等的,如图甲所示。2玻意耳定律pVC(常量),其中常量C不是一个普适常量,它随气体温度的升高而增大,温度越高,常量C越大,等温线离坐标轴越远。如图乙所示,4条等温线的关系为T4T3T2T1。3一定质量气体的等温变化过程,也可以用p图象来表示,如图丙所示。等温线是一条延长线通过原点的直线,由于气体的体积不能无穷大,所以靠近原点附近处应用虚线表示,该直线的斜率kpVC,即斜率越大,气体的温度越高。例3(多项选择)如下图是一定质量气体的两条等温线,那么以下关于各状态温度的说法中正确的选项是(A、B、C、D为四种状态) ()AtAtB BtBtCCtC>tD DtD>tA标准解答根据pV图象的变化规律可知tCtD>tAtB。故正确答案为A、D。完美答案AD(多项选择)如下图为一定质量的气体在不同温度下的两条p图线。由图可知()A一定质量的气体在发生等温变化时,其压强与体积成正比B一定质量的气体在发生等温变化时,其p图线的延长线经过坐标原点CT1>T2DT1<T2答案BD解析由图线可知A错误,B正确。p图线斜率越大,气体的温度越高,C错误,D正确。A组:合格性水平训练1(气体的等温变化)(多项选择)一定质量的气体,在等温变化过程中,以下物理量中发生改变的有()A分子的平均速率 B单位体积内的分子数C气体的压强 D分子总数E气体的体积答案BCE解析等温变化过程中,温度不变,那么分子的平均动能不变,所以分子的平均速率不变,p、V发生相应的变化,单位体积内的分子数也随之发生相应变化,但分子总数不变,故B、C、E正确。2. (压强的计算)如下图,活塞的质量为m,缸套的质量为M。通过弹簧吊在天花板上,汽缸内封有一定质量的气体。缸套和活塞间无摩擦,活塞面积为S,大气压强为p0。那么封闭气体的压强为()Ap0 Bp0Cp0 D.答案C解析对汽缸缸套进行受力分析,如下图。由平衡条件可得:p0SMgpS,所以pp0,故C正确。3(玻意耳定律)一定质量的气体在温度保持不变时,压强增大到原来的4倍,那么气体的体积变为原来的 ()A4倍 B2倍 C. D.答案D解析根据玻意耳定律p1V1p2V2得,即气体的体积变为原来的。4. (玻意耳定律)如下图,某种自动洗衣机进水时,与洗衣缸相连的细管中会封闭一定质量的空气,通过压力传感器感知管中的空气压力,从而控制进水量。设温度不变,洗衣缸内水位升高,那么细管中被封闭的空气()A体积不变,压强变小 B体积变小,压强变大C体积不变,压强变大 D体积变小,压强变小答案B解析水位升高,压强变大,由玻意耳定律pVC可知封闭气体体积减小,B正确。5. (玻意耳定律)如图,玻璃管内封闭了一段气体,气柱长度为l,管内外水银面高度差为h。假设温度保持不变,把玻璃管稍向上提起一段距离,那么()Ah、l均变大Bh、l均变小Ch变大l变小Dh变小l变大答案A解析开始时,玻璃管中的封闭气体的压强p1p0gh,上提玻璃管,假设h不变,那么l变长,由玻意耳定律得,p1l·Sp2(ll)·S,所以气体内部压强小了,大气压p0必然推着液柱上升,假设不成立,h必然变大一些。最后稳定时,封闭气体的压强p2p0g(hh)减小,再根据玻意耳定律,p1l1·Sp2l2·S,l2>l1,l变大,故A正确。6. (pV图象分析)(多项选择)如下图,为一定质量的气体在不同温度下的两条等温线,那么以下说法正确的选项是()A一定质量的气体在发生等温变化时,其压强与体积成反比B一定质量的气体,在不同温度下的等温线是不同的C由图可知T1T2D由图可知T1T2答案ABD解析根据等温图线的物理意义可知A、B正确,气体的温度越高时,等温图线的位置就越远离原点,所以C错误,D正确。7. (玻意耳定律)如下图,封闭端有一段长40 cm的空气柱,左右两边水银柱的高度差是19 cm,大气压强为76 cmHg,要使两边管中的水银面一样高,需要再注入_cm长的水银柱。答案39解析封闭气体做等温变化,由于初态p1p0ph(7619) cmHg57 cmHg,l140 cm,末态p2p076 cmHg,由玻意耳定律得:p1l1Sp2l2S,解得l230 cm,需再注入的水银柱长:lh2(l1l2)39 cm。8(探究气体等温变化的规律)用DIS研究一定质量气体在温度不变时,压强与体积关系的实验装置如图甲所示,实验步骤如下:把注射器活塞移至注射器中间位置,将注射器与压强传感器、数据采集器、计算机逐一连接;移动活塞,记录注射器的刻度值V,同时记录对应的由计算机显示的气体压强值p;用V图象处理实验数据,得出如图乙所示的图线。(1)为了保持封闭气体的质量不变,实验中采取的主要措施是_;(2)为了保持封闭气体的温度不变,实验中采取的主要措施是_和_;(3)如果实验操作标准、正确,但如图乙所示的V图线不过原点,那么V0代表_。答案(1)在注射器活塞上涂润滑油(2)移动活塞要缓慢不能用手握住注射器封闭气体局部(3)注射器与压强传感器连接部位的气体体积解析(1)通过涂润滑油可使注射器不漏气,从而保持其质量不变。(2)缓慢移动活塞是为了有足够的时间使封闭气体与外界进行热交换,不用手握住注射器也是为了不使手上的热量传递给封闭气体,从而保持气体温度不变。(3)注射器与压强传感器连接部位有气体,从而使图线不过原点。9. (玻意耳定律)如图为一种减震垫,上面布满了圆柱状薄膜气泡,每个气泡内充满体积为V0,压强为p0的气体,当平板状物品平放在气泡上时,气泡被压缩。假设气泡内气体温度保持不变,当体积压缩到V时气泡与物品接触面的面积为S,求此时每个气泡内气体对接触面处薄膜的压力。答案p0S解析设压力为F,压缩后气体压强为p。由p0V0pV和FpS得Fp0S。B组:等级性水平训练10(玻意耳定律) (多项选择)如下图,在一端封闭的玻璃管中,用一段水银将管内气体与外界隔绝,管口向下放置,假设将管倾斜,那么呈现的物理现象是()A封闭端内气体的压强增大B封闭端内气体的压强减小C封闭端内气体的压强不变D封闭端内气体的体积减小答案AD解析被封闭气体的压强pp0水银gh,其中h为水银柱的竖直高度,故当管倾斜时h将减小,压强p增大,又由于气体做等温变化,由玻意耳定律知,压强增大,体积减小。故A、D正确。11(玻意耳定律) (多项选择)如下图,一根一端封闭的玻璃管开口向下插入水银槽中,内封一定质量的气体,管内水银面低于管外,在温度不变时,将玻璃管稍向下插一些,以下说法中正确的选项是()A玻璃管内气体体积减小B玻璃管内气体体积增大C管内外水银面高度差减小D管内外水银面高度差增大答案AD解析假设玻璃管向下插入一些后,气体的体积不变,那么其液面的高度差h增大,气体的压强增大,由玻意耳定律知体积减小。故A、D正确。12(变质量问题)用活塞气筒向一个容积为V的容器内打气,每次把体积为V0、压强为p0的空气打入容器内,假设容器内原有空气的压强为p,打气过程中温度不变,那么打了n次气后容器内气体的压强为()An Bpnp0Cpn Dpnp0答案C解析以容器内原有的气体和打进的气体为研究对象,初态是pVnp0V0,末态是pV,由玻意耳定律pVnp0V0pV,所以pp,即C正确。13(pV图象分析)如下图是一定质量的某种气体状态变化的pV图象,气体由状态A变化到状态B的过程中,气体分子平均速率的变化情况是()A一直保持不变B一直增大C先减小后增大D先增大后减小答案D解析由图象可知,pAVApBVB,所以A、B两状态的温度相等,在同一等温线上。可在pV图上作出几条等温线,如下图。由于离原点越远的等温线温度越高,所以从状态A到状态B温度应先升高后降低,分子平均速率先增大后减小。14. (玻意耳定律)气压式保温瓶内密封空气的体积为V,瓶内水面与出水口的高度差为h,如下图。设水的密度为,大气压强为p0,欲使水从出水口流出,瓶内空气压缩量V至少应为_。答案解析开始时瓶内气压为p0,水恰好流出时,气压为p0gh,根据玻意耳定律,p0V(p0gh)(VV),解得V。15(玻意耳定律)自行车轮胎的容积是3 L,所装气体的压强为4×105 Pa。如果温度保持不变,把自行车轮胎的气阀翻开以后,气体慢慢跑到大气中,请问轮胎里剩下的气体是原来的百分之几?设大气压是1.0×105 Pa。答案25%解析以容器原装气体为研究对象。初始状态:p14×105 Pa,V13 L,末状态:p21.0×105 Pa,体积为V2,由于温度不变,根据玻意耳定律p1V1p2V2,V2 L12 L,所以×100%25%,即剩下的气体为原来的25%。- 10 -