欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数章节练习试题(含详细解析).docx

    • 资源ID:28145846       资源大小:592.32KB        全文页数:33页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数章节练习试题(含详细解析).docx

    人教版九年级数学下册第二十八章-锐角三角函数章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在RtABC中,C =90°,sinA=,则cosA的值等于( )ABCD2、cos60°的值为()ABCD13、在ABC中, ,则ABC一定是( )A直角三角形B等腰三角形C等边三角形D等腰直角三角形4、小菁同学在数学实践活动课中测量路灯的高度如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°0.6,cos35°0.8,tan35°0.7,sin65°0.9,cos65°0.4,tan65°2.1)()A3.2米B3.9米C4.7米D5.4米5、如图,AB是河堤横断面的迎水坡,堤高AC,水平距离BC1,则斜坡AB的坡度为()ABC30°D60°6、如图1所示,DEF中,DEF90°,D30°,B是斜边DF上一动点,过B作ABDF于B,交边DE(或边EF)于点A,设BDx,ABD的面积为y,图2是y与x之间函数的图象,则ABD面积的最大值为( )A8B16C24D487、如图,河坝横断面迎水坡的坡比为:,坝高m,则的长度为( )A6mBmC9mDm8、在RtABC中,C90°,AC4,BC3,则下列选项正确的是()AsinABcosACcosBDtanB9、一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高()米AB3CD以上的答案都不对10、如图,AB是的直径,点C是上半圆的中点,点P是下半圆上一点(不与点A,B重合),AD平分交PC于点D,则PD的最大值为( )A B C D第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知斜坡AB的水平宽度为12米,斜面坡度为,则斜坡AB的长为_;坡角为_2、_3、规定: ,据此判断下列等式成立的是:_(写出所有正确的序号)cos(60º) ,sin75º,4、ABC中,AB4,AC5,ABC的面积为5,那么A的度数是_5、如图,在矩形ABCD中,点E在边AB上,BEC与FEC关于直线EC对称,点B的对称点F在边AD上,G为CD中点,连结BG分别与CE,CF交于M,N两点若BMBE,MG2,则BN的长为 _,sinAFE的值为 _三、解答题(5小题,每小题10分,共计50分)1、如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方求红蓝双方最初相距多远(结果不取近似值)2、如图1,已知抛物线yx2+x+1与x轴交于A和B两点(点A在点B的左侧),与y轴交于点C(1)点C的坐标是 ,点B的坐标是 ;(2)M为线段BC上方抛物线上一动点,连接MC、MB,求MBC面积的最大值,并求出此时M的坐标;(3)如图2,T为线段CB上一动点,将OCT沿OT翻折得到OCT,当OCT与OBC的重叠部分为直角三角形时,求BT的长(4)如图3,动点P从点O出发沿x轴向B运动,过点P作CP的垂线交CB于D点P从O运动到B的过程中,点D运动所经过的路径总长等于 3、如图,在菱形ABCD中,ABC60°,经过点A的直线(不与BD垂直)与对角线BD所在直线交于点E,过点B,D分别作直线BD的垂线交直线AE于点F,H(1)当点E在如图位置时,求证:BFDHBD;(提示:延长DA交BF于G)(2)当点E在图、图的位置时,直接写出线段BF,DH,BD之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若DH1,BD4,则tanDHE 4、计算:5、计算下列各式:(1)sin60°4cos230°+sin45°tan60°;(2)-参考答案-一、单选题1、A【分析】由三角函数的定义可知sinA=,可设a=4,c=5,由勾股定理可求得b=3,再利用余弦的定义代入计算即可【详解】解:sinA=,可设a=4,c=5,由勾股定理可求得b=3,cosA=,故选:A【点睛】本题主要考查三角函数的定义,掌握正弦、余弦函数的定义是解题的关键2、C【分析】根据特殊角的余弦值即可得【详解】解:,故选:C【点睛】本题考查了特殊角的余弦,熟记特殊角(如)的余弦值是解题关键3、D【分析】结合题意,根据乘方和绝对值的性质,得,从而得,根据特殊角度三角函数的性质,得,;根据等腰三角形和三角形内角和性质计算,即可得到答案【详解】解:,ABC一定是等腰直角三角形故选:D【点睛】本题考查了绝对值、三角函数、三角形内角和、等腰三角形的知识;解题的关键是熟练掌握绝对值、三角函数的性质,从而完成求解4、C【分析】过点O作OEAC于点F,延长BD交OE于点F,设DFx,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案【详解】解:过点O作OEAC于点F,延长BD交OE于点F,设DFx,tan65°,OFxtan65°,BF3+x,tan35°,OF(3+x)tan35°,2.1x0.7(3+x),x1.5,OF1.5×2.13.15,OE3.15+1.54.65,故选:C【点睛】本题考查了锐角三角函数解直角三角形的应用,根据题意构建直角三角形是解本题的关键5、A【分析】直接利用坡度的定义得出,斜坡AB的坡度为:,进而得出答案【详解】解:由题意可得:ACB90°,则斜坡AB的坡度为:,故选:A【点睛】此题主要考查了解直角三角形的应用,正确掌握坡度的定义是解题关键6、C【分析】由图得点A到达点E时,面积最大,此时,由三角函数算出AB,由三角形面积公式即可求解【详解】由图可得:点A到达点E时,面积最大,此时,故选:C【点睛】本题考查二次函数图像问题以及解直角三角形,由题判断点A运动到哪里能使面积最大是解题的关键7、A【分析】根据迎水坡的坡比为:,可知,求出的长度,运用勾股定理可得结果【详解】解:迎水坡的坡比为:,即,解得,由勾股定理得,故选:【点睛】本题考查了解直角三角形的实际应用,勾股定理,熟知坡比的意义是解本题的关键8、B【分析】根据勾股定理求出AB,再根据锐角三角函数的定义求出sinA,cosA,cosB和tanB即可【详解】解:由勾股定理得:,所以,即只有选项B正确,选项A、选项C、选项D都错误故选:B【点睛】本题主要是考查了锐角三角函数的定义以及勾股定理,熟练掌握每个锐角三角函数的定义,是求解该类问题的关键9、B【分析】根据坡度即可求得坡角的正弦值,根据三角函数即可求解;【详解】坡比在实际问题中的应用解:坡度为1:7,设坡角是,则sin=,上升的高度是:30×米故选B【点睛】本题主要考查了解直角三角形的应用,准确分析计算是解题的关键10、A【分析】根据点C是半圆的中点,得到AC= BC,直径所对的圆周角是90°得到ACB=90°,同弧所对圆周角相等得到APC=ABC=45°,AD平分PAB得到 BAD = DAP,结合外角的性质可证CAD = CDA,由线段的和差解得PD=P-CD=P-1,由此可知当CP为直径时,PD最大,最后根据三角函数可得答案【详解】解:点C是半圆的中点, AC= BCAB是直径ACB=90°CAB = CBA= 45°同弧所对圆周角相等APC=ABC=45°AD平分PAB BAD = DAPCDA= DAP+ APC = 45°+ DAPCAD= CAB+BAD = 45°+ BADCAD = CDAAC=CD=1PD=P-CD=P-1当CP为直径时,PD最大RtABC中,ACB = 90°,CAB = 45°, CP的最大值是 PD的最大值是 -1,故选:A【点睛】本题考查了同弧所对圆周角相等、直径所对的圆周角是90°、角平分线的性质、三角形外角的性质、三角函数的知识,做题的关键是熟练掌握相关的知识点,灵活综合的运用二、填空题1、 83 30°#30度【解析】【分析】如图,由题意得:BCAC,AC=12,BC:AC=1:3,再利用坡度的含义求解A=30°, 再利用A的余弦函数值求解即可.【详解】解:如图,由题意得:BCAC,AC=12,BC:AC=1:3, 又tanA=BCAC=13=33, A=30°, 而cosA=ACAB, AB=12cos30°=12×23=83, 故答案为:83,30°【点睛】本题考查的是解直角三角形的应用,坡度,坡角的含义,由坡度求解出坡角为是解本题的关键.2、【解析】【分析】根据特殊角的三角函数值代入计算求解即可【详解】解:原式故答案为:【点睛】本题考查特殊角的三角函数值的混合运算,熟记特殊角的三角函数值,以及实数的混合运算法则是解题关键3、【解析】【分析】根据规定运算法则可得,由此可判断;根据和规定的运算法则即可判断;根据和规定的运算法则即可判断;根据和规定的运算法则即可得【详解】解:,等式不成立;,等式成立;,等式成立;,等式成立;综上,等式成立的是,故答案为:【点睛】本题考查了正弦和余弦,掌握理解规定的三角函数运算法则是解题关键4、60°或120°#120°或60°【解析】【分析】首先根据已知条件可以画出相应的图形,根据AC=5,可以求出AC边上的高,再根据A的三角函数值可得A的度数,注意需要分情况讨论【详解】解:当A是锐角时,如图,过点B作BDAC于D,AC5,ABC的面积为5,BD5×2÷52,在中,sinA,A60°当A是钝角时,如图,过点B作BDAC,交CA的延长线于D,AC5,ABC的面积为5,BD5×2÷52,在RtABD中,sinBADsinA,BAD60°BAC180°60°120°故答案为60°或120°【点睛】本题考查解直角三角形,解题的关键是画出合适的图形,作出相应的辅助线5、 4; #【解析】【分析】根据题意连接BF,FM,由翻折及BM=ME可得四边形BEFM为菱形,再由菱形对角线的性质可得BN=BA先证明AEFNMF得AE=NM,再证明FMNCGN可得,进而求解即可【详解】解:BM=BE,BEM=BME,ABCD,BEM=GCM,又BME=GMC,GCM=GMC,MG=GC=2,G为CD中点,CD=AB=4连接BF,FM,由翻折可得FEM=BEM,BE=EF,BM=EF,BEM=BME,FEM=BME,EFBM,四边形BEFM为平行四边形,BM=BE,四边形BEFM为菱形,EBC=EFC=90°,EFBG,BNF=90°,BF平分ABN,FA=FN,RtABFRtNBF(HL),BN=AB=4FE=FM,FA=FN,A=BNF=90°,RtAEFRtNMF(HL),AE=NM,设AE=NM=x,则BE=FM=4-x,NG=MG-NM=2-x,FMGC,FMNCGN,即,解得:(舍)或,故答案为:4;.【点睛】本题考查矩形的翻折问题和相似与全等三角形问题,解题关键是连接辅助线通过全等三角形及相似三角形的判定及性质求解三、解答题1、红蓝双方最初相距()米【解析】【分析】过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则E=F=90°,红蓝双方相距AB=DF+CE在RtBCE中,根据锐角三角函数的定义求出CE的长,同理,求出DF的长,进而可得出结论【详解】解:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则E=F=90°,红蓝双方相距AB=DF+CE在RtBCE中,BC=1000米,EBC=60°,CE=BCsin60°=1000×=500米在RtCDF中,F=90°,CD=1000米,DCF=45°,DF=CDsin45°=1000×=500米,AB=DF+CE=(500+500)米答:红蓝双方最初相距()米【点睛】本题考查了解直角三角形的应用-方向角问题,锐角三角函数的定义,正确理解方向角的定义,进而作出辅助线构造直角三角形是解题的关键2、(1)(0,1),(2,0);(2)SMBC最大值1, M(1,);(3)1或2或;(4)35【解析】【分析】(1)令y0,可求B点坐标,令x0,可求C点坐标;(2)求出直线BC的解析式为yx+1,过点M作MNx轴交直线BC于点N,设M(t,t2+t+1),则N(t,t+1),SMBC(t1)2+1,当t1时,SMBC有最大值1,M(1,);(3)分三种情况讨论:当TC'与BO垂直时,即OGT90°,CT1,CB,BT1;当OTC'90°时,CT,BT;当OC'与BC垂直时,即OHB90°,OH,CH,BH,在RtTC'H中,(TH)2TH2+(1)2,求出TH2,则BTBH+TH2;(4)设OPm,则CP,过点P作PFCB交于点F,当COPCPD时,PBm,则有m+m2,可求m,PB,CD,BD,当P点从O点运动,D点从B点开始向C点方向运动,到达COPCPD时,BD的长度达到最大值,当P点再向B点运动时,D点又向B点运动,直到D点回到B点,所以点D运动所经过的路径总长是BD长度的2倍,可求2BD35【详解】解:(1)令y0则x2+x+10,x2或x,B(2,0),令x0则y1,C(0,1),故答案为:(0,1),(2,0);(2)设直线BC的解析式为ykx+b,yx+1,如图,过点M作MNx轴交直线BC于点N,设M(t,t2+t+1),则N(t,t+1),MNt2+t+1+t1t2+2t,SMBC×2×(t2+2t)(t1)2+1,M为线段BC上方抛物线上一动点,0t2,当t1时,SMBC有最大值1,M(1,);(3)如图1,当TC'与BO垂直时,即OGT90°,TGCO,COTOTC',CTOOTC',CTOCOT,COCT,OC1,CT1,BO2,CB,BT1;如图2,当OTC'90°时,OCC'O1,COTOBC,sinCBO,CT,BT;如图3,当OC'与BC垂直时,即OHB90°,在RtOHB中,sinOBH,OH,在RtOCH中,CH,BH,OCOC'1,C'H1,CTC'T,CTCHTHTH,在RtTC'H中,C'T2TH2+C'H2,(TH)2TH2+(1)2,TH2,BTBH+TH+22;综上所述:BT的长为1或2或;(4)如图4,CPPD,CPD90°,设OPm,CP,过点P作PFCB交于点F,当COPCPD时,OCPCPD,OPPFm,sinOBC,PBm,m+m2,m,PB,CD1+m21+()2,BD,当P点从O点运动,D点从B点开始向C点方向运动,到达COPCPD时,BD的长度达到最大值,当P点再向B点运动时,D点又向B点运动,直到D点回到B点,点D运动所经过的路径总长是BD长度的2倍,2BD35,点D运动所经过的路径总长等于35,故答案为:35【点睛】本题考查了二次函数的动点运动的综合问题,对于运动型几何问题中的函数应用问题,解题时应深入理解运动图形所在的条件与环境,用运动的眼光去观察和研究问题,挖掘运动、变化的全过程,并特别关注运动与变化的不变量、不变关系和特殊关系,然后化“动态”为“静态”、化“变化”为“不变”,通过分析找出题中各图形的结合点,借助函数的性质予以解决 当图形(或某一事物)在运动的过程中达到最大值或最小值时,其位置必定在一个特殊的位置,这是普遍规律3、(1)见解析;(2)或;(3)或【解析】【分析】(1)延长DA交BF于G,先证明ABG是等边三角形,得到AG=AB=AD,然后证明AGFADH得到DH=GF,再求出即可得到答案;(2)如图所示,延长BA交DH于G,同理可证ABFAGH,得到,则;延长DA交BF延长线于G,同理可证,AG=AD,然后证明GAFDAH,得到,则;(3)如图所示,先根据结论求出,然后证明FBEHDE,得到,即,则,;然后对于图和图利用类似的方法求解即可【详解】解:(1)如图所示,延长DA交BF于G,四边形ABCD是菱形,ABC=60°,ADC=ABC=60°,AD=AB,BFBD,DHBD,FBD=HDB=90°,BGD=60°,ADH=120°,DG=2BG,FGA=120°,BAG=ABD+ADB=60°,ABG是等边三角形,AG=AB=AD,在AGF和ADH中,AGFADH(ASA),DH=GF,又,;(2)如图所示,延长BA交DH于G,同理可证ABFAGH,;如图所示,延长DA交BF延长线于G,同理可证,AG=AD,BFBD,DHBD,BGDH,FGA=HAD,又GAF=DAH,AG=AD,GAFDAH(AAS),;(3)如图所示,BFBD,DHBD,BF/DH,FBEHDE,即,;如图所示,此时不符合题意;如图所示,同理可得,EHDEFB,即,;故答案为:或【点睛】本题主要考查了全等三角形的性质与判定,菱形的性质,含30度角的直角三角形的性质,勾股定理,相似三角形的性质与判定,求正切值,等边三角形的性质与判定等等,解题的关键在于能够准确作出辅助线构造全等三角形4、7【解析】【分析】根据,立方根的求法,特殊三角函数的值,积的乘方,计算即可得答案【详解】解: =1-2+6-(-2)=7【点睛】本题考查了二次根式、零指数幂、特殊三角函数的值、积的乘方的相关计算,做题的关键是掌握相关法则,特别积的乘方的逆运算,认真计算5、(1)(2)【解析】【分析】(1)根据特殊角的三角函数值化简,故可求解;(2)根据特殊角的三角函数值化简,故可求解【详解】(1)sin60°4cos230°+sin45°tan60°=×4×+=(2)=【点睛】此题主要考查实数的运算,解题的关键是熟知特殊角的三角函数值、二次根式的运算即完全平方公式的运算

    注意事项

    本文(2021-2022学年人教版九年级数学下册第二十八章-锐角三角函数章节练习试题(含详细解析).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开