2021-2022学年人教版九年级数学下册第二十六章-反比例函数专题练习试题(名师精选).docx
-
资源ID:28146702
资源大小:568.42KB
全文页数:24页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年人教版九年级数学下册第二十六章-反比例函数专题练习试题(名师精选).docx
人教版九年级数学下册第二十六章-反比例函数专题练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线与反比例函数的图像交于A,B两点,则下列结论错误的是( )AB当A,B两点重合时,C当时,D不存在这样的k使得是等边三角形2、在同一直角坐标系中,一次函数与反比例函数(k0)的图象大致是( )ABCD3、下列坐标是反比例函数图象上的一个点的坐标是( )ABCD,4、下列各点中,在函数y图象上的是( )A(2,6)B(3,4)C(2,6)D(3,4)5、下列各点中,在反比例函数 图象上的是( )ABCD6、下列各点在反比例函数的图象上的是( )ABCD7、如图,过原点的一条直线与反比例函数的图象分别交于A,B两点,若A点的坐标为,则B点的坐标为( )ABCD8、反比例函数图象上有三个点,其中,则,的大小关系是( )ABCD9、已知反比例函数y,下列结论不正确的是()A图象经过点(1,1)B图象在第一、三象限C当x1时,0y1Dy随着x的增大而减小10、对于反比例函数,下列说法不正确的是( )A图象分布在二、四象限内B图象经过点C当时,随的增大而增大D若点,都在函数的图象上,且时,则第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点(5,y1),(3,y2),(3,y3)都在反比例函数y(k0)的图象上,则y1、y2、y3的大小关系是_(用“”号连接)2、如图,点A是反比例函数y在第四象限上的点,ABx轴,若SAOB1,则k的值为_3、已知反比例函数,则m=_,函数的表达式是_4、一货轮从甲港往乙港运送货物,甲港的装货速度是每小时30吨,一共装了8小时,到达乙港后开始卸货,乙港卸货的速度是每小时x吨,设卸货的时间是y小时,则y与x之间的函数关系式是 _(不必写自变量取值范围)5、两个反比例函数,在第一象限内的图象如图所示,点,在反比例函数图象上,它们的横坐标分别是,纵坐标分别是1,3,5,共2021个连续奇数,过点,分别作y轴的平行线,与的图象交点依次是, ,则的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,矩形ABCD的顶点A,B在x轴的正半轴上,点B在点A的右侧,反比例函数在第一象限内的图象与直线交于点D,且反比例函数交BC于点E,AD3(1)求D点的坐标及反比例函数的关系式;(2)若矩形的面积是24,求出CDE的面积(3)直接写出当x4时,y1的取值范围 2、一次函数ykx+b的图象与反比例函数y的图象交于点A(2,1),B(1,n)两点(1)求反比例函数的解析式及一次函数的解析式;(2)求AOB的面积3、当x=2时,y=(1)求y与x的函数关系式;(2)当x=4时,求y的值5已知正方形的面积为9,点是坐标原点,点在轴上,点在轴上,点在函数的图象上,点是函数的图象上任意一点过点分别作轴、轴的垂线,垂足分别为、若矩形和正方形不重合部分(阴影)面积为(提示:考虑点在点的左侧或右侧两种情况)(1)求点的坐标和的值;(2)写出关于的函数关系式;(3)当时,求点的坐标4、通过实验研究发现:初中生在体育课上运动能力指标(后简称指标)随上课时间的变化而变化上课开始时,学生随着运动,指标开始增加,中间一段时间,指标保持平稳状态,随后随着体力的消耗,指标开始下降指标y随时间x(分钟)变化的函数图象如图所示,当和时,图象是线段;当时,图象是反比例函数的一部分(1)求这个分段函数的表达式;(2)杨老师想在一节课上进行某项运动的教学需要18分钟,这项运动需要学生的运动能力指标不低于48才能达到较好的效果,他的教学设计能实现吗?请说明理由5、已知函数y,小明研究该函数的图象及性质时,列出y与x的几组对应值如下表:请解答下列问题:x-4-3-2-11234y124421(1)根据表格中给出的数值,在平面直角坐标系xOy中,指出以各对对应值为坐标的点,并画出该函数的图象;(2)写出该函数的两条性质: ; -参考答案-一、单选题1、D【分析】先联立联立得到,设A点坐标为(,),B点坐标为(,),然后分别求出OA,OB,即可判断A;根据A、B重合,则方程只有一个实数根,即,由此即可判断B;把代入中即可判断C;若AOB是等边三角形,则OA=AB,然后求出AB的长,令AB=OA,求出k的值,即可判断D【详解】解:联立得到,设A点坐标为(,),B点坐标为(,),A、B是直线与反比例函数的两个交点,故A选项不符合题意;A、B重合,则方程只有一个实数根,解得或(舍去),故B选项不符合题意;当时,故C选项不符合题意;若AOB是等边三角形,则OA=AB,解得或(舍去),存在,使得AOB是等边三角形,故D选项符合题意;故选D【点睛】本题主要考查了反比例函数与一次函数综合,两点距离公式,等边三角形的性质,一元二次方程根于系数的关系,一元二次方程根的判别式等等,解题的关键在于能够熟练掌握相关知识进行求解2、A【分析】由于本题不确定k的符号,可以根据一次函数经过的象限判断出k的符号,然后确定反比例函数经过的象限,然后与各选择项比较,从而确定答案【详解】解:A、一次函数y=kx-k 经过一、二、四象限,k0,则反比例函数经过二、四象限,故此选项符合题意;B、一次函数y=kx-k 经过一、三、四象限,k0,则反比例函数经过一、三象限,故此选项不符合题意;C、一次函数y=kx-k 经过一、二、四象限,k0,则反比例函数经过二、四象限,故此选项不符合题意;D、一次函数解析式为y=kx-k ,一次函数图像不可能经过第一、二、三象限,故此选项不符合题意;故选A【点睛】本题考查了反比例函数、一次函数的图象灵活掌握反比例函数的图象性质和一次函数的图象性质是解决问题的关键3、A【分析】根据反比例函数图象上点的坐标特征进行判断即可【详解】解:反比例函数图象上的点的坐标满足xy=3,A(1,3),1×3=3,满足xy=3,因此选项A符合题意;B(3,-1),而3×(-1)=-3,不满足xy=3,因此选项B不符合题意;C(-3,1),而-3×1=-3,不满足xy=3,因此选项C不符合题意;D(,而×=-9,不满足xy=3,因此选项D不符合题意;故选:A【点睛】本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数4、C【分析】直接利用反比例函数图象上点的坐标特点进而得出答案【详解】解:y=,xy=12A(-2,6),此时xy=-2×6=-1212,不符合题意;B、(3,-4),此时xy=3×(-4)=-1212,不符合题意;C、(-2,-6),此时xy=2×6=12,符合题意;D、(-3, 4),此时xy=-3×4=-1212,不合题意;故选C【点睛】此题主要考查了反比例函数图象上点的坐标特征,有理数乘法,属于基础题5、B【分析】根据反比例函数解析式可得xy=6,然后对各选项分析判断即可得解【详解】解:,xy=6,A、-2×3=-66,点(-2,3)不在反比例函数图象上,故本选项不符合题意;B、-2×(-3)=6,点(-2,-3)在反比例函数图象上,故本选项符合题意;C、3×(-2)=-66,点(3,-2)不在反比例函数图象上,故本选项不合题意;D、1×(-6)=-66,点(1,-6)不在反比例函数图象上,故本选项不合题意故选:B【点睛】本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数6、A【分析】根据得k=xy=2,所以只要点的横坐标与纵坐标的积等于2,就在函数图象上【详解】解:k=xy=2,Axy=1×2=k,符合题意;Bxy=2×(-1)=-2k,不合题意;Cxy=-2×1=-2k,不合题意;Dxy=2×0=0k,不合题意故选:A【点睛】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数7、C【分析】根据题意可知,A、B关于原点对称,则根据对称性即可得到B点坐标【详解】解:过原点的一条直线与反比例函数 的图象分别交于A,B两点,点A的坐标为(3,-5),A、B关于原点对称,B点坐标为(-3,5)故选C【点睛】本题考查了反比例函数图象的对称性,解决这类题目的关键是掌握两点的对称中心为原点8、B【分析】首先根据判断出反比例函数图象在第二,四象限,然后根据函数的增减性求解即可【详解】解:反比例函数中,此函数的图象在二、四象限,在每一象限内随的增大而增大,故选:B【点睛】本题考查反比例函数的图像和性质,熟练掌握反函数的图象和增减性是解题关键9、D【分析】根据反比例函数的性质,利用排除法求解【详解】解:A、x=1,y=1,图象经过点(1,1),正确;B、k=10,图象在第一、三象限,正确;C、k=10,图象在第一象限内y随x的增大而减小,当x1时,0y1,正确;D、应为当x0时,y随着x的增大而减小,错误故选:D【点睛】本题考查了反比例函数的性质,当k0时,函数图象在第一、三象限,在每个象限内,y的值随x的值的增大而减小10、D【分析】根据反比例函数图象的性质对各选项分析判断后利用排除法求解【详解】解:、,它的图象在第二、四象限,故本选项正确,不符合题意;、时,点在它的图象上,故本选项正确,不符合题意;、,当时,随的增大而增大,故本选项正确,不符合题意;、,在每一个象限内,随的增大而增大,当或 ,则,故本选项错误,符合题意,故选:D【点评】本题考查了反比例函数的性质,解题的关键是掌握反比例函数的图象是双曲线;当,双曲线的两支分别位于第一、第三象限,在每一象限内随的增大而减小;当,双曲线的两支分别位于第二、第四象限,在每一象限内随的增大而增大二、填空题1、y3y1y2【解析】【分析】由题意先根据反比例函数中k0,判断函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论【详解】解:反比例函数y(k0)函数图象的两个分支分别位于一、三象限,且在每一象限内y随x的增大而减小-5-30,点(-5,y1),(-3,y2)位于第三象限,y2y10,30,点(3,y3)位于第一象限,y30,故答案为:y3y1y2【点睛】本题考查的是反比例函数图象上点的坐标特点及平面直角坐标系中各象限内点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键2、2【解析】【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S|k|【详解】解:点A是反比例函数yy在第四象限内图象上的点,ABx轴,垂足为点B,SAOB|k|1;又函数图象位于二、四象限,k2,故答案为:2【点睛】本题考查了反比例函数系数的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,体现了数形结合的思想,做此类题一定要正确理解k的几何意义3、 1 y【解析】【分析】根据反比例函数的定义即y(k0),只需令m221、m10即可【详解】解:依题意有m221且(m1)0,所以m1函数的表达式是y故答案为:1,y【点睛】本题考查了反比例函数的定义,重点是将一般式(k0)转化为ykx1(k0)的形式4、#【解析】【分析】根据货轮装卸的货物相等建立等量关系,进而即可写出函数关系【详解】解:甲港的装货速度是每小时30吨,一共装了8小时,乙港卸货的速度是每小时x吨,设卸货的时间是y小时,即故答案为:【点睛】本题考查了反比例函数的应用,根据题意找到等量关系是解题的关键5、【解析】【分析】先得到第2021个奇数为4041,再根据反比例函数图象上点的坐标特征得P2021的坐标为(,4021),由于P2021Q20121平行y轴,所以Q2021的横坐标为,然后再利用反比例函数图象上点的坐标特征确定Q2021的纵坐标即可求解【详解】解:第2021个奇数为2×2021-1=4041,P2021的坐标为(,4041),P2021Q2021平行y轴,Q2021的横坐标为,Q2013的纵坐标为 故答案为【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k三、解答题1、(1)点D的坐标为:(4,3),;(2);(3)【分析】(1)根据正比例函数表达式求出点D坐标,再利用待定系数法求反比例函数的关系式即可;(2)根据矩形的面积求出AB的长,由反比例函数表达式求出点E坐标,再根据三角形面积公式计算即可;(3)观察图象找出范围即可【详解】解:(1)根据题意得:点D的纵坐标为3,把y3代入得:,解得:x4,即点D的坐标为:(4,3),把点D(4,3)代入得:,解得:k12,即反比例函数的关系式为:,(2)设线段AB,线段CD的长度为m,根据题意得:3m24,解得:m8,点B,点C的横坐标为:4+812,把x12代入得:y1,点E的坐标为:(12,1),CE312,SCDECE×CD×2×88;(3)观察图象,当x4时,y1的取值范围是0y13,故答案为:0y13【点睛】本题考查了反比例函数与一次函数的交点问题,正确掌握代入法和待定系数法,掌握矩形和三角形的面积公式,读懂函数图象是解题的关键2、(1)y;yx1;(2)AOB的面积为【分析】(1)利用待定系数法求解反比例函数和一次函数的解析式即可;(2)设与轴交点为,则AOB的面积为和的面积和【详解】解:(1)将点(2,1)代入,得:,解得:m2,则反比例函数解析式为:;将点B(1,n)代入,得:n2,将点A、B的坐标代入一次函数解析式,得:,解得:,故一次函数解析式为:(2)一次函数解析式为:,令y0,则x1,点C的坐标为(1,0),OC1,【点睛】本题主要考查了待定系数法求反比例函数及一次函数解析式,根据已知得出B点坐标是解题的关键,并利用数形结合的思想求解3、(1),;(2);(3)或【分析】(1)先根据正方形的面积公式可得,从而可得点的坐标,再利用待定系数法即可得的值;(2)先将点代入反比例函数的解析式可得,再分点在点的右侧,点在点的左侧两种情况,分别利用矩形的面积公式即可得;(3)根据(2)的结果,求出时,的值,由此即可得出答案【详解】解:(1)正方形的面积为9,将点代入得:;(2)由(1)得:反比例函数的解析式为,将点代入得:,由题意,分以下两种情况:如图,当点在点的右侧,即时,则,;如图,当点在点的左侧,即时,则,综上,关于的函数关系式为;(3)当时,解得,则,即此时点的坐标为;当时,解得,则,即此时点的坐标为;综上,点的坐标为或【点睛】本题考查了反比例函数与几何综合等知识点,较难的是题(2),正确分两种情况讨论是解题关键4、(1)0-10分钟的函数解析式为,20-40分钟的函数解析式为;(2)杨老师的教学设计能实现,理由见解析【分析】(1)设0-10分钟的函数解析式为,20-40分钟的函数解析式为,然后利用待定系数法求解即可;(2)将代入中得,代入中得,由此求解即可【详解】解:(1)设0-10分钟的函数解析式为,20-40分钟的函数解析式为,0-10分钟的函数解析式为,20-40分钟的函数解析式为;(2)将代入中得,将代入中得,杨老师的教学设计能实现【点睛】本题主要考查了一次函数与反比例函数综合,解题的关键在于能够熟练掌握待定系数法求函数解析式5、(1)见解析;(2)该函数的两条性质:图象关于y轴对称,当时,随的增大而增大;当时,随的增大而减小【分析】(1)利用描点法画出函数的图象;(2)根据函数图象得到该函数的性质【详解】(1)如图:(2)该函数的两条性质:图象关于y轴对称,当时,随的增大而增大;当时,随的增大而减小【点睛】本题考查了反比例函数的图象和性质,正确画出函数的图象是解题的关键