欢迎来到淘文阁 - 分享文档赚钱的网站! | 帮助中心 好文档才是您的得力助手!
淘文阁 - 分享文档赚钱的网站
全部分类
  • 研究报告>
  • 管理文献>
  • 标准材料>
  • 技术资料>
  • 教育专区>
  • 应用文书>
  • 生活休闲>
  • 考试试题>
  • pptx模板>
  • 工商注册>
  • 期刊短文>
  • 图片设计>
  • ImageVerifierCode 换一换

    2021-2022学年基础强化北师大版八年级数学下册第六章平行四边形达标测试练习题(无超纲).docx

    • 资源ID:28147441       资源大小:358.49KB        全文页数:25页
    • 资源格式: DOCX        下载积分:9金币
    快捷下载 游客一键下载
    会员登录下载
    微信登录下载
    三方登录下载: 微信开放平台登录   QQ登录  
    二维码
    微信扫一扫登录
    下载资源需要9金币
    邮箱/手机:
    温馨提示:
    快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2021-2022学年基础强化北师大版八年级数学下册第六章平行四边形达标测试练习题(无超纲).docx

    北师大版八年级数学下册第六章平行四边形达标测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个多边形的内角和是它的外角和的两倍,则从这个多边形的一个顶点出发共有()条对角线A6条B4条C3条D2条2、在平行四边形中,于,于, BF相交于H,BF与AD的延长线相交于点G,下面给出四个结论:;,其中正确的结论是( )ABCD3、如图,桐桐从A点出发,前进3m到点B处后向右转20°,再前进3m到点C处后又向右转20°,这样一直走下去,她第一次回到出发点A时,一共走了( )A100mB90mC54mD60m4、下列多边形中,内角和与外角和相等的是( )A三角形B四边形C五边形D六边形5、如图,在六边形中,若,则( )A180°B240°C270°D360°6、已知一个多边形的外角都等于,那么这个多边形的边数为( )A6B7C8D97、如图,一只蚂蚁从点A出发沿直线前进5m,到达点B后,向左转角度,再沿直线前进5m,到达点C后,又向左转角度,照这样爬下去,第一次回到出发点,蚂蚁共爬了60m,则每次向左转的度数为( )A30B36C40D608、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D89、多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为( )A9条B8条C7条D6条10、如图,在正五边形ABCDE中,连接AD,则DAE的度数为( )A46°B56°C36°D26°第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、过n边形的一个顶点有5条对角线,则这个多边形的内角和为_2、若一个多边形的内角和是外角和的倍,则它的边数是_3、如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=_4、如图,在四边形中,分别是的中点,分别以为直径作半圆,这两个半圆面积的和为,则的长为_5、如图,在中,为上的两个动点,且,则的最小值是_三、解答题(5小题,每小题10分,共计50分)1、如图,已知ABC中,D是AB上一点,ADAC,AECD,垂足是E,F是BC的中点,求证:BD2EF2、探究与发现:(1)如图(1),在ADC中,DP、CP分别平分ADC和ACD若,则 若,用含有的式子表示为 (2)如图(2),在四边形ABCD中,DP、CP分别平分ADC和BCD,试探究P与A+B的数量关系,并说明理由(3)如图(3),在六边形ABCDEF中,DP、CP分别平分EDC和BCD,请直接写出P与A+B+E+F的数量关系: 3、如图,四边形ABCD是平行四边形,BAC90°(1)尺规作图:在BC上截取CE,使CECD,连接DE与AC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM和CF的数量关系,并证明你的结论4、如图1,在等腰直角三角形ABC中,BAC90°,点E,F分别为AB,AC的中点,H为线段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方旋转90°,得到AG,连接GC,HB(1)证明:AHBAGC(2)如图2,连接HG和GF,其中HG交AF于点Q证明:在点H的运动过程中,总有HFG90°;若ABAC4,当EH的长度为多少时,AQG为等腰三角形?5、如果一个正多边形的内角和是900°,则这个正多边形是正几边形?它的对角线的总条数是多少?-参考答案-一、单选题1、C【分析】先由多边形的内角和公式与外角和的关系可得再解方程,从而可得答案.【详解】解:设这个多边形为边形,则 解得: 所以从这个多边形的一个顶点出发共有条对角线,故选C【点睛】本题考查的是多边形的内角和定理与外角和定理,多边形的对角线问题,掌握“利用多边形的内角和为 外角和为”是解题的关键.2、A【分析】先判断DBE是等腰直角三角形,根据勾股定理可推导得出BD=BE,可判断不正确;根据BHE和C都是HBE的余角,可得BHE=C,再由A=C,可判断正确;证明BEHDEC,从而可得BH=CD,再由AB=CD,可判断正确;利用对应边不等可判断不正确,据此即可得到选项【详解】解:DBC=45°,DEBC于E,DEB=90°,BDE=180°-DBE-DEB=180°-45°-90°=45°,BE=DE,在RtDBE中,BE2+DE2=BD2,BD=BE,故正确; DEBC,BFDC,HBE+BHE=90°,C+FBC=90°,BHE和C都是HBE的余角,BHE=C,又在ABCD中,A=C,A=BHE,故正确;在BEH和DEC中,BEHDEC(AAS),BH=CD,四边形ABCD为平行四边形,AB=CD,AB=BH,故正确;BEBHBE=DE,BCBFBH=DC,FBC=EDC,不能得到BCFDCE,故错误故选A【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定与性质、勾股定理、全等三角形的判定与性质等,熟练掌握相关性质与定理是解题的关键3、C【分析】根据多边形的外角和及每一个外角的度数,可求出多边形的边数,再根据题意求出正多边形的周长即可【详解】解:由题意可知,当她第一次回到出发点A时,所走过的图形是一个正多边形,由于正多边形的外角和是360°,且每一个外角为20°,360°÷20°18,所以它是一个正18边形,因此所走的路程为18×354(m),故选:C【点睛】本题考查了多边形的内角与外角,能熟记多边形的外角和定理是解此题的关键,注意:多边形的外角和=360°4、B【分析】根据多边形的内角和公式(n-2)180°与多边形的外角和定理列式进行计算即可得解【详解】解:设多边形的边数为n,根据题意得(n-2)180°=360°,解得n=4故选:B【点睛】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键5、C【分析】根据多边形外角和求解即可【详解】解: , ,故选:C【点睛】本题考查了多边形的外角和定理,掌握多边形外角和是解题的关键6、D【分析】根据多边形外角公式,代入角度求出n即可【详解】外角故多边形边数为9故选D【点睛】本题考查多边形外角公式,掌握该公式是本题解题关键7、A【分析】蚂蚁第一次回到出发点,爬行路线是一个多边形,是这个多边形的外角,根据正多边形的外角和定理即可得出答案【详解】解:蚂蚁爬行路线是一个多边形,边数是,由于每个外角都相等,所以 ,故选:A【点睛】本题主要考查正多边形外角和定理,解题关键是要牢记多边形的外角和为360°8、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90°,根据勾股定理计算,得到答案【详解】解:C=90°,CAB+CBA=90°,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QDB=90°,即PDQ=90°,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键9、A【分析】多边形从一个顶点出发的对角线共有(n-3)条多边形的每一个内角都等于150°,多边形的内角与外角互为邻补角,则每个外角是30度,而任何多边形的外角是360°,则求得多边形的边数;再根据不相邻的两个顶点之间的连线就是对角线,则此多边形从一个顶点出发的对角线共有(n-3)条,即可求得对角线的条数【详解】解:多边形的每一个内角都等于150°,每个外角是30°,多边形边数是360°÷30°=12,则此多边形从一个顶点出发的对角线共有12-3=9条故选A【点睛】本题主要考查了多边形的外角和定理,已知外角求边数的这种方法是需要熟记的内容10、C【分析】在等腰三角形中,求出的度数即可解决问题【详解】在正五边形中,,是等腰三角形,故选:C【点睛】本题主要考查等腰三角形的性质以及正多边形内角,解答本题的关键是求出正五边形的内角,此题基础题,比较简单二、填空题1、【分析】根据过n边形的一个顶点有n-3条对角线求出n的值,再利用多边形内角和公式计算即可【详解】过n边形的一个顶点有5条对角线n=8这个多边形的内角和是故答案为:【点睛】本题考查了多边形的对角线,多边形的内角,读懂题目信息并准确识图,熟记多边形对角线的的规律是解题的关键2、【分析】根据多边形的内角和公式(n2)180°以及外角和定理列出方程,然后求解即可【详解】解:设这个多边形的边数是n,根据题意得,(n2)180°2×360°,解得n6答:这个多边形的边数是6故答案为:6【点睛】本题考查了多边形的内角和公式与外角和定理,需要注意,多边形的外角和与边数无关,任何多边形的外角和都是360°3、6【分析】根据多边形内角和公式(n-2)×180°及多边形外角和始终为360°可列出方程求解问题【详解】解:由题意得:(n-2)×180°=360°×2,解得:n=6;故答案为6【点睛】本题主要考查多边形内角和及外角和,熟练掌握多边形的内角和公式及外角和是解题的关键4、4【分析】根据题意连接BD,取BD的中点M,连接EM、FM,EM交BC于N,根据三角形的中位线定理推出EM=AB,FM=CD,EMAB,FMCD,推出ABC=ENC,MFN=C,求出EMF=90°,根据勾股定理求出ME2+FM2=EF2,根据圆的面积公式求出阴影部分的面积即可【详解】解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,ABC+DCB=90°,E、F、M分别是AD、BC、BD的中点,EM=AB,FM=CD,EMAB,FMCD,ABC=ENC,MFN=C,MNF+MFN=90°,NMF=180°-90°=90°,EMF=90°,由勾股定理得:ME2+FM2=EF2,阴影部分的面积是:(ME2+FM2)=EF2=8,EF=4.故答案为:4【点睛】本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行线的性质,面积与等积变形等知识点的理解和掌握,能正确作辅助线并求出ME2+FM2的值是解答此题的关键5、【分析】过点A作AD/BC,且ADMN,连接MD,则四边形ADMN是平行四边形,作点A关于BC的对称点A,连接AA交BC于点O,连接AM,三点D、M、A共线时,最小为AD的长,利用勾股定理求AD的长度即可解决问题【详解】解:过点A作AD/BC,且ADMN,连接MD,则四边形ADMN是平行四边形,MDAN,ADMN,作点A关于BC的对称点A,连接A A交BC于点O,连接AM,则AMAM,AMANAMDM,三点D、M、A共线时,AMDM最小为AD的长,AD/BC,AOBC,DA90°,BCBOCOAO,在RtAD中,由勾股定理得:D的最小是值为:,故答案为:【点睛】本题主要考查了等腰三角形的性质,平行四边形的判定与性质,勾股定理等知识,构造平行四边形将AN转化为DM是解题的关键三、解答题1、见解析【分析】先证明 再证明EF是CDB的中位线,从而可得结论.【详解】证明:ADAC,AECDCEEDF是BC的中点EF是CDB的中位线BD2EF【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.2、(1)125°P90°;(2)P(AB)(3)P(ABEF)180°【分析】(1)根据角平分线的定义可得:CDPADC,DCPACD,根据三角形内角和为180°可得P与A的数量关系;同的方法即可求解;(2)根据角平分线的定义可得:CDPADC,DCPBCD,根据四边形内角和为360°,可得BCDADC360°(AB),再根据三角形内角和为180°,可得P与AB的数量关系;(3)根据角平分线的定义可得:CDPADC,DCPBCD,根据六边形内角和为720°,可得BCDEDC720°(ABEF),再根据三角形内角和为180°,可得P与AB的数量关系【详解】解:(1)DP、CP分别平分ADC和ACD,CDPADC,DCPACDAADCACD180°ADCACD180°APPDCPCD180°P180°(PDCPCD)180° (ADCACD)P180°(180°A)90°A=90°×70°=125°故答案为:125°;DP、CP分别平分ADC和ACD,CDPADC,DCPACDAADCACD180°ADCACD180°APPDCPCD180°P180°(PDCPCD)180° (ADCACD)P180°(180°A)90°A=90°故答案为:P90°;(2)P(AB)理由如下:DP、CP分别平分ADC和BCD,CDPADC,DCPBCDABBCDADC360°BCDADC360°(AB)PPDCPCD180°P180°(PDCPCD)180°(ADCBCD)P180°360°(AB)(AB)(3)DP、CP分别平分EDC和BCDPDCEDC,PCDBCDABEFBCDEDC720°BCDEDC720°(ABEF)PPDCPCD180°P180°(PDCPCD)180°(EDCBCD)P180° 720°(ABEF)P(ABEF)180°故答案为:P(ABEF)180°【点睛】本题考查了四边形综合题,多边形的内角和,角平分线的性质,利用多边形的内角和表示角的数量关系是本题的关键3、(1)图形见解析;(2),证明见解析【分析】(1)以C为圆心CD长为半径画弧于BC交点即为E;连DE与AC交点即为F;过F作AD的垂直平分线与AD交点即为M;(2)证明DF平分,再利用角平分线的性质判定即可【详解】(1)图形如下:(2),证明如下:由(1)可得:,CECD四边形ABCD是平行四边形ADBC,ABCD,即DF平分BAC90°【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行四边形的判定与性质4、(1)见详解;(2)见详解;EH= 或;【分析】(1)根据等腰直角三角形ABC中,BAC90°,可得AB=AC,根据线段AH绕点A逆时针方旋转90°,得到AG,可得AH=AG,HAD=90°,可证BAH=CAG,即可证ABHABG(SAS);(2)根据点E,F分别为AB,AC的中点,可得AE=,AF=,EFBC,可得AB=AC,BAC=90°,可得AE=AF,EAF=90°,可求AEF=AFE=,再证AEHAFG(SAS),可得AEH=AFG=45°,可求HFG=AFE+AFG=45°+45°=90°;根据ABAC4,BAC=90°,利用勾股定理,根据点E,F分别为AB,AC的中点,可求EF=,根据AQG为等腰三角形,分三种情况,当AQ=GQ时,根据AH=AG,HAG=90°,可求QAG=QGA=45°,可证HGAC,再证AH平分EAF,AE=AF,可得EH=HF=;当AG=GQ=AH,AGQ=45°,可求GAQ=GQA=,可求EAH=EHA=67.5°,可得EH=AE=;当AQ=QG时,根据AQG是AQM的外角,得出AQGAMQ=90°AGQ=45°,AQ=AG不成立【详解】(1)证明:等腰直角三角形ABC中,BAC90°,AB=AC,线段AH绕点A逆时针方旋转90°,得到AG,AH=AG,HAD=90°,BAH+HAF=HAF+CAG=90°,BAH=CAG,在ABH和ABG中,ABHABG(SAS),(2)证明:点E,F分别为AB,AC的中点,AE=,AF=,EFBC,AB=AC,BAC=90°,AE=AF,EAF=90°,AEF=AFE=,在AEH和AFG中,AEHAFG(SAS),AEH=AFG=45°,HFG=AFE+AFG=45°+45°=90°,HFG90°;解:ABAC4,BAC=90°,根据勾股定理,点E,F分别为AB,AC的中点,EF=,AQG为等腰三角形分三种情况当AQ=GQ时,AH=AG,HAG=90°,AHG=AGH=,QAG=QGA=45°,AQG=180°-QAG-QGA=90°,HGAC,HAQ=90°-QAG=90°-45°=45°,EAH=90°-HAQ=90°-45°=45°,AH平分EAF,AE=AF,EH=HF=当AG=GQ=AH,AGQ=45°,GAQ=GQA=,EAH=QAG=67.5,AHE=180°-AEH-EAH=180°-45°-67.5°=67.5°EAH=EHA=67.5°EH=AE=;当AQ=QG时,过A作AMHG于M,AQG是AQM的外角,AQGAMQ=90°AGQ=45°,AQ=AG不成立综合得EH=或2【点睛】本题考查等腰直角三角形的性质,三角形全等判定与性质,直角三角形判定,等腰三角形分类讨论思想,掌握等腰直角三角形的性质,三角形全等判定与性质,直角三角形判定,等腰三角形分类讨论思想是解题关键5、这个正多边形是正七边形,总对角线的条数为14条【分析】根据多边形的内角和公式求解即可,从一个n边形的某个顶点出发,可以引条对角线,则总对角线的条数为条【详解】解:设这个多边形为边形,根据多边形内角和公式可得,解得总对角线的条数为(条)这个正多边形是正七边形,总对角线的条数为14条【点睛】本题考查了多边形的内角和公式,对角线的条数,牢记多边形的内角和公式是解题的关键

    注意事项

    本文(2021-2022学年基础强化北师大版八年级数学下册第六章平行四边形达标测试练习题(无超纲).docx)为本站会员(知****量)主动上传,淘文阁 - 分享文档赚钱的网站仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知淘文阁 - 分享文档赚钱的网站(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于淘文阁 - 版权申诉 - 用户使用规则 - 积分规则 - 联系我们

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号 © 2020-2023 www.taowenge.com 淘文阁 

    收起
    展开