2021-2022学年人教版八年级数学下册第十八章-平行四边形专项测试试卷(无超纲带解析).docx
-
资源ID:28148282
资源大小:1.29MB
全文页数:28页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年人教版八年级数学下册第十八章-平行四边形专项测试试卷(无超纲带解析).docx
人教版八年级数学下册第十八章-平行四边形专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,把一张长方形纸片ABCD沿对角线AC折叠,点B的对应点为点B,AB与DC相交于点E,则下列结论正确的是 ( )ADABCABBACDBCD CADAEDAECE2、如图,四边形和四边形都是矩形若,则等于( )ABCD3、已知中,CD是斜边AB上的中线,则的度数是( )ABCD4、如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H的位置,折痕为EF,则ABE的面积为( )A6cm2B8cm2C10cm2D12cm25、如图,的对角线交于点O,E是CD的中点,若,则的值为( )A2B4C8D166、如图所示,公路AC、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6km,则M、C两点间的距离为()A2.5kmB4.5kmC5kmD3km7、如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O,点E是CD的中点,BD12,则DOE的周长是( )A12B15C18D248、平行四边形OABC在平面直角坐标系中的位置如图所示,AOC45°,OAOC,则点B的坐标为()A(,1)B(1,)C(1,1)D(1,1)9、如图,在菱形ABCD中,AB5,AC8,过点B作BECD于点E,则BE的长为( )ABC6D10、如图,把矩形纸片沿对角线折叠,若重叠部分为,那么下列说法错误的是( )A是等腰三角形B和全等C折叠后得到的图形是轴对称图形D折叠后和相等第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平行四边形ABCD中,对角线AC、BD交于点O,M、N分别为AB、BC的中点,若OM1.5,ON1,则平行四边形ABCD的周长是_2、如图,在平面直角坐标系中,点A,B,C的坐标分别为(8,0),(8,6),(0,6),点D为线段BC上一动点,将OCD沿OD翻折,使点C落到点E处当B,E两点之间距离最短时,点D的坐标为_3、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB8,AD16,BE4,则MC的长为_4、如图,在四边形中,分别是的中点,分别以为直径作半圆,这两个半圆面积的和为,则的长为_5、如图,直线l经过正方形ABCD的顶点B,点A,C到直线l的距离分别是1,3,则正方形ABCD的面积是 _三、解答题(5小题,每小题10分,共计50分)1、已知:ABCD的对角线AC,BD相交于O,M是AO的中点,N是CO的中点,求证:BMDN,BM=DN2、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是103、如图:在中,点为的中点,点为直线上的动点(不与点,重合),连接,以为边在的上方作等边,连接(1)是_三角形;(2)如图1,当点在边上时,运用(1)中的结论证明;(3)如图2,当点在的延长线上时,(2)中的结论是否依然成立?若成立,请加以证明,若不成立,请说明理由4、如图,在中,过点作于点,点在边上,连接,(1)求证:四边形是矩形;(2)若,求证:平分5、如图,在平面直角坐标系中,ABC三个顶点的坐标分别为A(1,1)、B(4,2)、C(3,5)(1)请画出ABC关于x轴的对称图形A1B1C1;(2)借助网格,利用无刻度直尺画出线段CD,使CD平分ABC的面积(保留确定点D的痕迹)试卷第28页,共21页-参考答案-一、单选题1、D【解析】【分析】根据翻折变换的性质可得BAC=CAB,根据两直线平行,内错角相等可得BAC=ACD,从而得到ACD=CAB,然后根据等角对等边可得AE=CE,从而得解【详解】解:矩形纸片ABCD沿对角线AC折叠,点B的对应点为B,BAC=CAB,ABCD,BAC=ACD,ACD=CAB,AE=CE,结论正确的是D选项故选D.【点睛】本题考查了翻折变换的性质,平行线的性质,矩形的对边互相平行,等角对等边的性质,熟记各性质并准确识图是解题的关键2、A【解析】【分析】由题意可得AGF=DAB=90°,由平行线的性质可得,即可得DGF=70°【详解】解:四边形ABCD和四边形AEFG都是矩形AGF=DAB=90°,DC/AB故选:A【点睛】本题考查了矩形的性质,熟练掌握矩形的性质是本题的关键3、B【解析】【分析】由题意根据三角形的内角和得到A=36°,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论【详解】解:ACB=90°,B=54°,A=36°,CD是斜边AB上的中线,CD=AD,ACD=A=36°.故选:B【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键4、A【解析】【分析】根据折叠的条件可得:,在中,利用勾股定理就可以求解【详解】将此长方形折叠,使点与点重合,根据勾股定理得:,解得:故选:A【点睛】本题考查了利用勾股定理解直角三角形,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键5、B【解析】【分析】根据平行四边形的性质可得,SBOC=SAOD=SCOD=SAOB=8,再根据三角形的中线平分三角形的面积可得根据三角形的中线平分三角形的面积可得SDOE=4,进而可得答案【详解】解:四边形ABCD是平行四边形,SBOC=SAOD=SCOD=SAOB=8,点E是CD的中点,SDOE=SCOD=4,故选:B【点睛】此题主要考查了平行四边形的性质,以及三角形中线的性质,掌握平行四边形的性质,三角形的中线平分三角形的面积是解答本题的关键6、D【解析】【详解】根据直角三角形斜边上的中线性质得出CMAB,即可求出CM【解答】解:公路AC,BC互相垂直,ACB90°,M为AB的中点,CMAB,AB6km,CM3km,即M,C两点间的距离为3km,故选:D【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半7、B【解析】【分析】根据平行四边形的对边相等和对角线互相平分可得,OBOD,又因为E点是CD的中点,可得OE是BCD的中位线,可得OEBC,所以易求DOE的周长【详解】解:ABCD的周长为36,2(BCCD)36,则BCCD18四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD12,ODOBBD6又点E是CD的中点,OE是BCD的中位线,DECD,OEBC,DOE的周长ODOEDEBD(BCCD)6915,故选:B【点睛】本题考查了三角形中位线定理、平行四边形的性质解题时,利用了“平行四边形对角线互相平分”、“平行四边形的对边相等”的性质8、C【解析】【分析】作,求得、的长度,即可求解【详解】解:作,如下图:则在平行四边形中,为等腰直角三角形则,解得故选:C【点睛】此题考查了平行四边形的性质,等腰直角三角形的性质以及勾股定理,解题的关键是灵活运用相关性质进行求解9、B【解析】【分析】根据菱形的性质求得的长,进而根据菱形的面积等于,即可求得的长【详解】解:如图,设的交点为,四边形是菱形,在中,菱形的面积等于故选B【点睛】本题考查了菱形的性质,掌握菱形的性质,求得的长是解题的关键10、D【解析】【分析】根据题意结合图形可以证明EB=ED,进而证明ABECDE;此时可以判断选项A、B、D是成立的,问题即可解决【详解】解:由题意得:BCDBFD,DC=DF,C=F=90°;CBD=FBD,又四边形ABCD为矩形,A=F=90°,DEBF,AB=DF,EDB=FBD,DC=AB,EDB=CBD,EB=ED,EBD为等腰三角形;在ABE与CDE中,ABECDE(HL);又EBD为等腰三角形,折叠后得到的图形是轴对称图形;综上所述,选项A、B、C成立,不能证明D是正确的,故说法错误的是D,故选:D【点睛】本题主要考查了翻折变换及其应用问题;解题的关键是灵活运用翻折变换的性质,找出图中隐含的等量关系;借助矩形的性质、全等三角形的判定等几何知识来分析、判断、推理或解答二、填空题1、10【解析】【分析】根据平行四边形的性质可得BODO,ADBC,ABCD,再由条件M、N分别为AB、BC的中点可得MO是ABD的中位线,NO是BCD的中位线,再根据三角形中位线定理可得AD、DC的长【详解】解:四边形ABCD是平行四边形,BODO,ADBC,ABCD,M、N分别为AB、BC的中点,MOAD,NOCD,OM1.5,ON1,AD3,CD2,平行四边形ABCD的周长是:332210,故答案为:10【点睛】此题主要考查了平行四边形的性质,以及中位线定理,关键是掌握平行四边形对边相等,对角线互相平分2、(3,6)【解析】【分析】连接OB,证得当O、E、B在同一直线上时,BE取得最小值,再利用勾股定理构造方程求解即可【详解】解:连接OB,点A,B,C的坐标分别为(8,0),(8,6),(0,6),OA=8,AB=6,BC=8,OC=6,COA=90°,四边形OABC为矩形,OB=,由折叠的性质知:OC=OE=6,CD=DE,BEOB-OE=10-6=4,当O、E、B在同一直线上时,BE取得最小值,此时BE=4,DEB=90°,设CD=DE=x,则BD=8-x,解得:x=3,即CD=3,点D的坐标为(3,6)【点睛】本题考查了矩形的判定和性质,坐标与图形,折叠的性质,勾股定理,解题的关键是学会利用参数构建方程解决问题,3、10【解析】【分析】过E作EFAD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出ANMENM,可得AM=EM,根据矩形ABCD,得出B=A=D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可【详解】解:过E作EFAD于F,矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,ANMENM,AM=EM,矩形ABCD,B=A=D=90°, FEAD,AFE=B=A=90°,四边形ABEF为矩形,AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4在RtFEM中,根据勾股定理,即,解得m=10,MD=AD-AM=16-10=6,在RtMDC中,MC=故答案为10【点睛】本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键4、4【解析】【分析】根据题意连接BD,取BD的中点M,连接EM、FM,EM交BC于N,根据三角形的中位线定理推出EM=AB,FM=CD,EMAB,FMCD,推出ABC=ENC,MFN=C,求出EMF=90°,根据勾股定理求出ME2+FM2=EF2,根据圆的面积公式求出阴影部分的面积即可【详解】解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,ABC+DCB=90°,E、F、M分别是AD、BC、BD的中点,EM=AB,FM=CD,EMAB,FMCD,ABC=ENC,MFN=C,MNF+MFN=90°,NMF=180°-90°=90°,EMF=90°,由勾股定理得:ME2+FM2=EF2,阴影部分的面积是:(ME2+FM2)=EF2=8,EF=4.故答案为:4【点睛】本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行线的性质,面积与等积变形等知识点的理解和掌握,能正确作辅助线并求出ME2+FM2的值是解答此题的关键5、10【解析】【分析】根据正方形的性质,结合题意易求证,即可利用“ASA”证明,得出最后根据勾股定理可求出,即正方形的面积为10【详解】四边形ABCD是正方形,根据题意可知:,在和中,在中,正方形ABCD的面积是10故答案为:10【点睛】本题考查正方形的性质,全等三角形的判定和性质以及勾股定理利用数形结合的思想是解答本题的关键三、解答题1、见解析【分析】连接,根据平行四边形的性质可得AO=OC,DO=OB,由M是AO的中点,N是CO的中点,进而可得MO=ON,进而即可证明四边形是平行四边形,即可得证【详解】如图,连接,四边形ABCD为平行四边形,AO=OC,DO=OBM为AO的中点,N为CO的中点,即MO=ON四边形是平行四边形,BMDN,BM=DN【点睛】本题考查了平行四边形的性质与判定,掌握平行四边形的性质与判定是解题的关键2、(1)见解析;(2)见解析;(3)见解析【分析】(1)如图,AB=4,BC=3,利用勾股定理逆定理即可得到ABC是直角三角形;(2)如图, ,利用勾股定理逆定理即可得到ABC是直角三角形;(3)如图, ,则,ABC=90°,即可得到四边形ABCD是正方形,【详解】解:(1)如图所示,AB=4,BC=3,ABC是直角三角形;(2)如图所示, ,ABC是直角三角形;(3)如图所示, ,ABC=90°,四边形ABCD是正方形,【点睛】本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键3、(1)等边;(2)见解析;(3)成立,理由见解析【分析】(1)根据含30度角的直角三角形的性质,直角三角形斜边上的中线等于斜边的一半可证明,即可证明OBC是等边三角形;(2)先证明,即可利用SAS证明,得到;(3)先证明,即可利用SAS证明,得到【详解】(1)ACB=90°,A=30°,O是AB的中点,OBC是等边三角形,故答案为:等边;(2)由(1)可知,是等边三角形,即,在和中,;(3)成立,证明:由(1)可知,是等边三角形,即,在和中,【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,熟练掌握等边三角形的性质与判定条件是解题的关键4、(1)见解析;(2)见解析【分析】(1)先证明四边形是平行四边形,结合,从而可得结论;(2)先证明,再求解 证明证明从而可得结论.【详解】(1)证明:四边形是平行四边形,即 ,四边形是平行四边形,四边形是矩形;(2)四边形是平行四边形, 四边形是矩形; 在中,由勾股定理,得,即平分【点睛】本题考查的是勾股定理的应用,角平分线的定义,平行四边形的判定与性质,矩形的判定,证明四边形是平行四边形是解(1)的关键,证明是解(2)的关键.5、(1)见解析;(2)见解析;【分析】(1)根据关于轴对称的点的坐标变化作图即可;(2)利用格点特征以及矩形对角线互相平分且相等的性质取中点从而求解【详解】解:(1)如图所示,A1B1C1即为所求,(2)连接格点,交于点,已知、为矩形的对角线,连接,根据矩形的性质可得点为线段的中点,即为所求【点睛】本题考查了网格作图中的轴对称变换和矩形的性质,解题的关键是掌握并运用相关性质进行求解