2021-2022学年度北师大版八年级数学下册第五章分式与分式方程同步训练练习题(无超纲).docx
-
资源ID:28148444
资源大小:274.45KB
全文页数:16页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度北师大版八年级数学下册第五章分式与分式方程同步训练练习题(无超纲).docx
北师大版八年级数学下册第五章分式与分式方程同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、中国高铁目前是世界高铁的领跑者,无论里程和速度都是世界最高的郑州、北京两地相距约,乘高铁列车从郑州到北京比乘特快列车少用,已知高铁列车的平均行驶速度是特快列车的2.8倍,设特快列车的平均行驶速度为,则下面所列方程中正确( )ABCD2、下列各式计算正确的是( )ABCD3、八年级学生去距学校15km的博物馆参观,一部分学生骑自行车先走,过了30min后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度若设骑车同学的速度为x千米/时,则所列方程时( )ABCD4、x满足什么条件时分式有意义( )ABCD5、斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度如图,某路口的斑马线路段ABC横穿双向行驶车道,其中AB=BC=12米,在绿灯亮时,小敏共用22秒通过AC路段,其中通过BC路段的速度是通过AB路段速度的1.2倍,则小敏通过AB路段时的速度是( )A0.5米/秒B1米/秒C1.5米/秒D2米/秒6、飞沫一般认为是直径大于5微米(5微米0.000005米)的含水颗粒飞沫传播是新型冠状病毒的主要传播途径之一,日常面对面说话、咳嗽、打喷嚏都可能造成飞沫传播因此有效的预防措施是戴口罩并尽量与他人保持1米以上社交距离将0.000005用科学记数法表示应为( )ABCD7、某单位向一所希望小学赠送1080本课外书,现用A、B两种不同的包装箱进行包装,单独使用B型包装箱比单独使用A型包装箱可少用6个;已知每个B型包装箱比每个A型包装箱可多装15本课外书若设每个A型包装箱可以装书x本,则根据题意列得方程为()ABCD8、如果把中的和都扩大到原来的5倍,那么分式的值( )A扩大到原来的5倍B不变C缩小为原来的D无法确定9、已知分式的值等于0,则x的值为( )A0B1CD1或10、在代数式,中,分式的个数为( )A2B3C4D5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、计算:_2、当x_时,分式有意义3、从3,1,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程1有整数解,那么这5个数中所有满足条件的a的值之和是_4、已知:关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,则关于x的方程的两个解为_5、甲做360个零件与乙做480个零件所用的时间相同,已知两人每天共做140个零件,若设甲每天做x个零件,则可列方程_三、解答题(5小题,每小题10分,共计50分)1、(1)先化简,再求值:,其中(2)解分式方程:2、解方程:3、在开学第一课中,东京奥运会的奥运健儿们向新开学的同学们送上了“希望你们能像运动员一样,努力奔跑,刻苦学习,实现你们的梦想”的祝福为了提高学生的体育锻炼的意识和能力,丰富学生的体育锻炼的内容,学校准备购买一批体育用品 在购买跳绳时,甲种跳绳比乙种跳绳的单价低10元,用1600元购买甲种跳绳与用2100元购买乙种跳绳的数量相同,求甲乙两种跳绳的单价各是多少元?4、(1)计算:(x+y)2(xy)2÷(2xy)(2)化简求值:,其中x选取2,0,1,4中的一个合适的数5、(1)计算: (2)计算:(3)计算: (4)因式分解:-参考答案-一、单选题1、A【分析】设特快列车的平均行驶速度为,则高铁列车的平均行驶速度是,根据“郑州、北京两地相距约,乘高铁列车从郑州到北京比乘特快列车少用”,即可求解【详解】解:设特快列车的平均行驶速度为,则高铁列车的平均行驶速度是,根据题意得:故选:A【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键2、D【分析】根据分式的运算法则逐项计算即可判断【详解】解:A. ,原选项错误,不符合题意;B. ,原选项错误,不符合题意;C. ,原选项错误,不符合题意;D. ,原选项正确,符合题意;故选:D【点睛】本题考查了分式的运算,解题关键是熟记分式运算法则,准确进行计算3、C【分析】设骑车同学的速度为x千米/时,汽车的速度是2x千米/时,根据同时到达列出方程即可【详解】解:设骑车同学的速度为x千米/时,汽车的速度是2x千米/时,根据题意列方程得,故选:C【点睛】本题考查了分式方程的应用,解题关键是找准等量关系,列出方程,注意单位转换4、D【分析】直接利用分式有意义的条件解答即可【详解】解:要使分式有意义,解得:,故选:D【点睛】本题考查了分式有意义的条件,熟练掌握分式有意义的条件分母不等于零,是解题的关键5、B【分析】设通过AB的速度是xm/s,则根据题意可列分式方程,解出x即可【详解】设通过AB的速度是xm/s,根据题意可列方程: ,解得x=1,经检验:x=1是原方程的解且符合题意所以通过AB时的速度是1m/s故选B【点睛】本题考查分式方程的实际应用,根据题意找出等量关系并列出分式方程是解答本题的关键6、D【分析】将0.000005写成a×10n(1|a|10,n为整数)的形式即可【详解】解:0.000005=5×10-6故选D【点睛】本题主要考查了科学记数法,将原数写成a×10n(1|a|10,n为整数)的形式,确定a、n的值成为解答本题的关键7、C【分析】设每个A型包装箱可以装书本,则每个B型包装箱可以装书()本,所用A型包装箱的数量=所用B型包装箱的数量6,列分式方程即可【详解】解:设每个A型包装箱可以装书本,则每个B型包装箱可以装书()本,根据题意,得:,故选:C【点睛】本题考查了列分式方程解应用题,由实际问题抽象出分式方程的关键是分析题意找出等量关系8、A【分析】把分式中的x与y分别用5x与5y代替,再化简即可判断【详解】分式中的x与y分别用5x与5y代替后,得,由此知,此时分式的值扩大到原来的5倍故选:A【点睛】本题考查了分式的基本性质,一般地,本题中把x与y均扩大n倍,则分式的值也扩大n倍9、B【分析】根据分式值为0的条件,分子为0分母不为0列式进行计算即可得【详解】解:分式的值为零,解得:x=1,故选B【点睛】本题主要考查了分式值为0的条件,熟知分式值为0的条件是解题的关键10、A【分析】根据分式的定义解答即可【详解】解: 、 的分母中含字母,是分式, 、 、的分母中不含字母,不是分式,故选:A【点睛】本题主要考查分式的定义,判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,注意不是字母,是常数,所以分母中含的代数式不是分式,是整式二、填空题1、2【分析】根据分式的运算法则即可求解【详解】故答案为:2【点睛】此题主要考查分式的运算,解题的关键是熟知其运算法则2、5【分析】根据分式有意义的条件即可求出答案【详解】解:由分式有意义的条件可知:x-50,x5,故答案为:5【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是:分母不为0是解题的关键3、【分析】不等式组中两不等式整理后,由不等式组无解确定出a的范围,进而舍去a不合题意的值,分式方程去分母转化为整式方程,表示出整数方程的解,由分式方程有整数解,确定出满足题意a的值,求出之和即可【详解】解:解不等式得:,解不等式得:不等式组的解集为,由不等式组无解,得到a1,即a3,1,1,分式方程去分母得:x+a23x,解得:x,由分式方程的解为整数,得到a-3,1,所有满足条件的a的值之和是-3+1=-2,故答案为:-2【点睛】本题主要考查了解一元一次不等式组和解分式方程,解题的关键在于能够熟练掌握相关知识进行求解4、x1a,x2【分析】根据关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,得到规律求解即可【详解】解:关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,依规律,得x1a1或x1,解得:x1a,x2故答案为:x1a,x2【点睛】本题主要考查了与分式有关的规律型问题,解题的关键在于根据题意找到规律并且构造5、【分析】设甲每天做x个零件,则乙每天做 个零件,根据“甲做360个零件与乙做480个零件所用的时间相同,”列出方程,即可求解【详解】解:设甲每天做x个零件,则乙每天做 个零件,根据题意得: 故答案为:【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键三、解答题1、(1),;(2)x=【分析】(1)先对原式化简,再将m=-3代入化简后的式子即可解答本题;(2)先把分式方程变形成整式方程,求解后再检验即可【详解】解:(1)=,当m=-3时,原式=; (2)原方程变形为方程两边同乘以2(3x-1),得 3(3x-1)-2= 5,去括号得,9x-3-2=5,整理得,9x=10,解得x=,检验:当x=时,2(3x-1)0,x=是原分式方程的解【点睛】本题考查了解分式方程,分式的化简求值,解题的关键是明确分式化简求值的方法解分式方程注意要检验2、【分析】先去分母把分式方程化为整式方程,然后按照整式方程的求解方法求解即可【详解】解:去分母,得 , 去括号,得,移项,得 , 合并同类项,得 ,系数化为1,得,检验:当时, 是原方程的解【点睛】本题主要考查了解分式方程,熟知解分式方法的方法是解题的关键3、乙种跳绳的单价为42元,甲种跳绳的单价为32元【分析】设乙种跳绳的单价为元,则甲种跳绳的单价为元,根据题意列出方程求解即可【详解】设乙种跳绳的单价为元,则甲种跳绳的单价为元,依据题意列出方程为:,解得:,经检验:是所列方程的解,并且符合实际意义,答:乙种跳绳的单价为42元,则甲种跳绳的单价为32元【点睛】本题考查分式方程的应用,根据题意列出方程是解题的关键,分式方程注意检验4、(1)2;(2),当x1时,原式4【分析】(1)首先利用完全平方公式和平方差公式化简,然后括号里面合并同类项,最后根据单项式除以单项式运算法则求解即可;(2)首先对分子分母因式分解和括号里面式子通分,然后根据分式的混合运算法则化简,最后代入求解即可【详解】(1)(x+y)2(xy)2÷(2xy)(x2+2xy+y2x2+2xyy2)÷2xy4xy÷2xy2;(2)解:原式÷()+1+1+要使分式有意义,当x1时,原式4【点睛】此题考查了整式的混合运算,分式的化简求值问题,解题的关键是熟练掌握整式的混合运算和分式的混合运算法则5、(1)(2)(3)(4)y(3x-y)(3x-y)【分析】(1)应用分式的运算法则计算即可(2)同(1)应用分式的运算法则计算即可(3)根据二次根式的混合运算法则计算即可(4)运用提取公因式和完全平方公式即可因式分解【详解】(1)(2)(3)(4)9x2y-6xy2+y3=y(9x2-6xy+y2)=y(3x-y)2y(3x-y)(3x-y)【点睛】本题考查了分式的运算、二次根式的混合运算和因式分解,做分式混合运算时,要注意运算顺序,乘除法是同级运算,要严格按照由左到右的顺序进行运算,切不可打乱这个运算顺序;二次根式的混合运算依旧遵循整式运算的运算法则,但结果应为最简二次根式形式;因式分解的基本思路是:一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解