2021-2022学年沪科版九年级数学下册期末专项测评试题-卷(Ⅱ)(含详解).docx
-
资源ID:28148684
资源大小:1.30MB
全文页数:29页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年沪科版九年级数学下册期末专项测评试题-卷(Ⅱ)(含详解).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·沪科版九年级数学下册期末专项测评试题 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知菱形ABCD的对角线交于原点O,点A的坐标为,点B的坐标为,则点D的坐标是( )ABCD2、如图,AB是的直径,CD是的弦,且,则图中阴影部分的面积为( )ABCD3、下列判断正确的个数有( )直径是圆中最大的弦;长度相等的两条弧一定是等弧;半径相等的两个圆是等圆;弧分优弧和劣弧;同一条弦所对的两条弧一定是等弧A1个B2个C3个D4个4、如图,在中,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是( )ABCD5、如图,点P是等边三角形ABC内一点,且PA3,PB4,PC5,则APB的度数是( )A90°B100°C120°D150°6、下列事件中,是必然事件的是( )A刚到车站,恰好有车进站B在一个仅装着白乒乓球的盒子中,摸出黄乒乓球C打开九年级上册数学教材,恰好是概率初步的内容D任意画一个三角形,其外角和是360°7、在中,cm,cm以C为圆心,r为半径的与直线AB相· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·切则r的取值正确的是( )A2cmB2.4cmC3cmD3.5cm8、在中,给出条件:;外接圆半径为4请在给出的3个条件中选取一个,使得BC的长唯一可以选取的是( )ABCD或9、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进)则小张从不同的出入口进出的概率是()ABCD10、如图,PA,PB是O的切线,A,B为切点,PA4,则PB的长度为( )A3B4C5D6第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、把一副普通扑克牌中的13张黑桃牌洗匀后正面朝下放在桌子上,从中随机抽取一张,则抽出的牌上的数小于5的概率为 _2、如图,在O中,A,B,C是O上三点,如果AOB=70º,那么C的度数为_3、一个不透明的袋子中放有3个红球和5个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率为 _4、半径为6cm的扇形的圆心角所对的弧长为cm,这个圆心角_度5、如图,在O中,BOC=80°,则A=_°三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系中,的三个顶点坐标分别为(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(3)写出经过怎样的旋转可直接得到(请将20题(1)(2)小问的图都作在所给图中)2、如图,正方形ABCD是半径为R的O内接四边形,R6,求正方形ABCD的边长和边心距3、在平面直角坐标系中,O的半径为1,对于直线l和线段AB,给出如下定义:若将线段AB关于直线l对称,可以得到O的弦A´B´(A´,B´分别为A,B的对应点),则称线段AB是O的关于直线l对称的“关联线段”例如:在图1中,线段是O的关于直线l对称的“关联线段”(1)如图2,的横、纵坐标都是整数在线段中,O的关于直线yx2对称的“关联线段”是_;若线段中,存在O的关于直线yxm对称的“关联线段”,则 ;(2)已知直线交x轴于点C,在ABC中,AC=3,AB=1,若线段AB是O的关于直线对称的“关联线段”,直接写出b的最大值和最小值,以及相应的BC长4、如图,在中,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且将线段AE绕点A逆时针旋转90°,得到线段AF,连接BE,FE,连接FC并延长交BE于点G(1)依题意补全图形;(2)求的度数;(3)连接GA,用等式表示线段GA,GB,GC之间的数量关系,并证明5、解题与遐想如图,RtABC的内切圆与斜边AB相切于点D,AD4,BD5求RtABC的面积· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·王小明:这道题算出来面积刚好是20,太凑巧了吧刚好是4×520,有种白算的感觉赵丽华:我把4和5换成m、n再算一遍,ABC的面积总是mn!确实非常神奇了数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了我怎么想不出来呢?计算验证(1)通过计算求出RtABC的面积拼图演绎(2)将RtABC分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明尺规作图(3)尺规作图:如图,点D在线段AB上,以AB为斜边求作一个RtABC,使它的内切圆与斜边AB相切于点D(保留作图的痕迹,写出必要的文字说明)-参考答案-一、单选题1、A【分析】根据菱形是中心对称图形,菱形ABCD的对角线交于原点O,则点与点关于原点中心对称,根据中心对称的点的坐标特征进行求解即可【详解】解:菱形是中心对称图形,菱形ABCD的对角线交于原点O,与点关于原点中心对称,点B的坐标为,点D的坐标是故选A【点睛】本题考查了菱形的性质,求关于原点中心对称的点的坐标,掌握菱形的性质是解题的关键2、C【分析】如图,连接OC,OD,可知是等边三角形,计算求解即可【详解】解:如图连接OC,OD· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·是等边三角形由题意知,故选C【点睛】本题考查了扇形的面积,等边三角形等知识解题的关键在于用扇形表示阴影面积3、B【详解】直径是圆中最大的弦;故正确,同圆或等圆中长度相等的两条弧一定是等弧;故不正确半径相等的两个圆是等圆;故正确弧分优弧、劣弧和半圆,故不正确同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则不正确综上所述,正确的有故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键4、C【分析】过点A作ACx轴于点C,设 ,则 ,根据勾股定理,可得,从而得到 ,进而得到 ,可得到点 ,再根据旋转的性质,即可求解【详解】解:如图,过点A作ACx轴于点C, 设 ,则 , , , ,解得: ,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · · , ,点 ,将绕原点O顺时针旋转90°,则旋转后点A的对应点的坐标是,将绕原点O逆时针旋转90°,则旋转后点A的对应点的坐标是故选:C【点睛】本题考查坐标与图形变化一旋转,解直角三角形等知识,解题的关键是求出点A的坐标,属于中考常考题型5、D【分析】将绕点逆时针旋转得,根据旋转的性质得,则为等边三角形,得到,在中,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数【详解】解:为等边三角形,可将绕点逆时针旋转得,如图,连接,为等边三角形,在中,为直角三角形,且,故选:D【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等6、D【分析】根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判断选项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:A、刚到车站,恰好有车进站是随机事件;B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;D、任意画一个三角形,其外角和是360°是必然事件;故选D【点睛】本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念7、B【分析】如图所示,过C作CDAB,交AB于点D,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r【详解】解:如图所示,过C作CDAB,交AB于点D,在RtABC中,AC=3cm,BC=4cm,根据勾股定理得:AB=5(cm),SABC=BCAC=ABCD,×3×4=×10×CD,解得:CD=2.4,则r=2.4(cm)故选:B【点睛】此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键8、B【分析】画出图形,作,交BE于点D根据等腰直角三角形的性质和勾股定理可求出AD的长,再由AD和AC的长作比较即可判断;由前面所求的AD的长和AB的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB上方,也可在AB下方,其与AE的交点即为C点,为两点不唯一,可判断其不符合题意【详解】如图,点C在射线上作,交BE于点D,为等腰直角三角形,不存在的三角形ABC,故不符合题意;,AC=8,而AC>6,存在的唯一三角形ABC,如图,点C即是· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,使得BC的长唯一成立,故符合题意;,存在两个点C使的外接圆的半径等于4,两个外接圆圆心分别在AB的上、下两侧,如图,点和即为使的外接圆的半径等于4的点故不符合题意故选B【点睛】本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质利用数形结合的思想是解答本题的关键9、D【分析】先画树状图得到所有的等可能性的结果数,然后找到小张从不同的出入口进出的结果数,最后根据概率公式求解即可【详解】解:列树状图如下所示:由树状图可知一共有8种等可能性的结果数,其中小张从不同的出入口进出的结果数有6种,P小张从不同的出入口进出的结果数,故选D【点睛】本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握用列表法或树状图法求解概率10、B【分析】由切线的性质可推出,再根据直角三角形全等的判定条件“HL”,即可证明,即得出【详解】PA,PB是O的切线,A,B为切点,在和中,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质熟练掌握切线的性质是解答本题的关键二、填空题1、【分析】抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,由此可以容易知道事件抽出的牌的点数小于5的概率【详解】解:抽出的牌的点数小于5有1,2,3,4共4个,总的样本数目为13,从中任意抽取一张,抽出的牌点数小于5的概率是: 故答案为:【点睛】此题主要考查了概率的求法用到的知识点为:概率=所求情况数与总情况数之比2、35°【分析】利用圆周角定理求出所求角度数即可【详解】解:与都对,且,故答案为:【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理3、【分析】让红球的个数除以球的总数即为摸到红球的概率【详解】解:红球的个数为3个,球的总数为3+5=8(个),摸到红球的概率为,故答案为:【点睛】本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比4、60【分析】根据弧长公式求解即可【详解】解:,解得,故答案为:60【点睛】本题考查了弧长公式,灵活应用弧长公式是解题的关键.· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·5、40°度【分析】直接根据圆周角定理即可得出结论【详解】解:与是同弧所对的圆心角与圆周角,故答案为:【点睛】本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半三、解答题1、(1)见解析,;(2)见解析,(3)绕点O顺时针时针旋转【分析】(1)根据题意得:关于原点的对称点为 ,再顺次连接,即可求解;(2)根据题意得:绕点O逆时针旋转后的对称点为 ,再顺次连接;(3)根据题意得:绕点O顺时针时针旋转后可直接得到,即可求解(1)解:根据题意得:关于原点的对应点为 ,画出图形如下图所示:(2)解:根据题意得:绕点O逆时针旋转后的对应点为 ,画出图形如下图所示:(3)解:根据题意得:绕点O顺时针时针旋转后可直接得到【点睛】本题主要考查了图形的变换画关于原点对称,绕原点旋转后图形,得到图形关于原点对称,绕原点旋转后对应点的坐标是解题的关键2、边长为,边心距为【分析】过点O作OEBC,垂足为E,利用圆内接四边形的性质求出BOC=90°,OBC=45°,然后在RtOBE中,根据勾股定理求出OE、BE即可【详解】解:过点O作OEBC,垂足为E,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·正方形ABCD是半径为R的O内接四边形,R6,BOC=90°,OBC=45°,OB=OC=6, BE=OE 在RtOBE中,BEO=90°,由勾股定理可得OE2+BE2=OB2,OE2+BE2=36,OE= BE=, BC=2BE=, 即半径为6的圆内接正方形ABCD的边长为,边心距为【点睛】本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等于3、(1) A1B1;2或3;(2)b的最大值为,此时BC;b的最小值为,此时BC【分析】(1)根据题意作出图象即可解答;根据“关联线段”的定义,可确定线段A2B2存在“关联线段”,再分情况解答即可;(2)设与AB对应的“关联线段”是AB,由题意可知:当点A(1,0)时,b最大,当点A(-1,0)时,b最小;然后分别画出图形求解即可;【详解】解:(1)作出各点关于直线y=x+2的对称点,如图所示,只有A1B1符合题意;故答案为:A1B1;由于直线A1B1与直线y=-x+m垂直,故A1B1不是O的关于直线y-xm对称的“关联线段”;由于线段A3B3=,而圆O的最大弦长直径=2,故A3B3也不是O的关于直线y-xm对称的“关联线段”;直线A2B2的解析式是y=-x+5,且,故A2B2是O的关于直线yx2对称的“关联线段”;当A2B2是O的关于直线y-xm对称的“关联线段”,且对应两个端点分别是(0,1)与(1,0)时,m=3,当A2B2是O的关于直线y-xm对称的“关联线段”,且对应两个端点分别是(0,-1)与(-1,0)时,m=2,故答案为:2或3(2)设与AB对应的“关联线段”是AB,由题意可知:当点A(1,0)时,b最大,当点A(-1,0)时,b最小;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·当点A(1,0)时,如图,连接OB,CB,作BMx轴于点M,CA=CA=3,点C坐标为(4,0),代入直线,得b=;AB=OA=OB=1,OAB是等边三角形,OM=,在直角三角形CBM中,CB'=,即;当点A(-1,0)时,如图,连接OB,CB,作BMx轴于点M,CA=CA=3,点C坐标为(2,0),代入直线,得b=;AB=OA=OB=1,OAB是等边三角形,OM=,在直角三角形CBM中,CB'=;即综上,b的最大值为,此时BC; b的最小值为,此时BC【点睛】本题是新定义综合题,主要考查了一次函数图象上点的坐标特点、圆的有关知识、等边三角形的判定和性质、勾股定理、轴对称的性质等知识,正确理解新定义的含义、灵活应用数形结合思想是解题的关键4、(1)见解析;(2)(3)【分析】(1)根据题意补全图形即可;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(2)根据旋转的性质可得,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明;(3)过点作,证明,进而根据勾股定理以及线段的转换即可得到(1)如图,(2)将线段AE绕点A逆时针旋转90°,得到线段AF,,又即(3)证明如下,如图,过点作,又,又,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·即【点睛】本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键5、(1)SABC20;(2)见解析;(3)见解析【分析】(1)设O的半径为r,由切线长定理得,AEAD4,BFBD5,CECFr,由勾股定理得,(r+4)2+(r+5)292,进而求得结果;(2)根据切线长定理可证明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;(3)可先计算AFB135°,根据“定弦对定角”作F点的轨迹,根据切线性质,过点F作AB的垂线,再根据直径所对的圆周角是90°,确定点C【详解】解:(1)如图1,设O的半径为r,连接OE,OF,O内切于ABC,OEAC,OFBC,AEAD4,BFBD5,OECOFCC90°,四边形ECFO是矩形,CFOEr,CEOFr,AC4+r,BC5+r,在RtABC中,由勾股定理得,(r+4)2+(r+5)292,r2+9r20,SABC20;(2)如图2,(3)设ABC的内切圆记作F,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·AF和BF平分BAC和ABC,FDAB,BAFCAB,ABF,BAF+ABF(BAC+ABC)45°,AFB135°,可以按以下步骤作图(如图3):以BA为直径作圆,作AB的垂直平分线交圆于点E,以E为圆心,AE为半径作圆,过点D作AB的垂线,交圆于F,连接EF并延长交圆于C,连接AC,BC,则ABC就是求作的三角形【点睛】本题考查三角形的内切圆性质、切线长定理、勾股定理、矩形的判定与性质、尺规作图-作垂线,熟练掌握相关知识的联系与运用是解答的关键