2021-2022学年北师大版七年级数学下册第六章概率初步章节测评试卷(精选).docx
-
资源ID:28148845
资源大小:176.35KB
全文页数:15页
- 资源格式: DOCX
下载积分:8金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年北师大版七年级数学下册第六章概率初步章节测评试卷(精选).docx
北师大版七年级数学下册第六章概率初步章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件中属于必然事件的是( )A正数大于负数B下周二,温州的天气是阴天C在一个只装有白球的袋子中摸出一个红球D在一张纸上任意画两条线段,这两条线段相交2、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )ABCD3、不透明袋中装有3个红球和5个绿球,这些球除颜色外无其他差别从袋中随机摸出1个球是红球的概率为( )ABCD4、一个不透明的袋子中有2个红球,3个黄球和4个蓝球,这些球除颜色外完全相同,从袋子中随机摸出一个球,它是红球的概率为( )ABCD5、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为().A B C D16、任意掷一枚质地均匀的骰子,偶数点朝上的可能性是( )ABCD7、一个质地均匀的小正方体,六个面分别标有数字“”,“”,“”“”,“”,“”,抛出小正方体后,观察朝上一面的数字,出现偶数的概率是( )ABCD8、袋中有白球3个,红球若干个,他们只有颜色上的区别从袋中随机取出一个球,如果取到白球的可能性更大,那么袋中红球的个数可能是( )A2个B3个C4个D4个或4个以上9、下列事件是必然事件的是()A水中捞月B抛掷一枚质地均匀的硬币,正面向上C打开电视,正在播广告D如果a、b都是实数,那么abba10、现有4条线段,长度依次是2、5、7、8,从中任选三条,能组成三角形的概率是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、从如图所示的四张扑克牌中任取一张,牌面数字是3的倍数的概率是_2、有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁,随机取出一把钥匙开任意一把锁,一次打开锁的概率是_3、一个不透明的袋中装有6个黄球,m个红球,n个白球,每个球除颜色外都相同把袋中的球搅匀,从中任意摸出一个球,摸出黄球记为事件A,摸出的球不是黄球记为事件B,若P(A)2P(B),则m与n的数量关系是_4、动物学家通过大量的调查,估计某种动物活到20岁的概率为0.85,活到25岁概率为0.55,现年20岁的这种动物活到25岁的概率是_5、有背面完全相同,正面分别画有等腰三角形、平行四边形、矩形、菱形、等腰梯形的卡片5张,现正面朝下放置在桌面上,将其混合后,并从中随机抽取一张,则抽中正面的图形一定是轴对称图形的卡片的概率为 _三、解答题(5小题,每小题10分,共计50分)1、小明家里的阳台地面,水平铺设了仅黑白颜色不同的18块方砖(如图),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上(1)求小皮球分别停留在黑色方砖与白色方砖上的概率;(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖颜色?怎样改变?2、动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3(1)现年20岁的这种动物活到25岁的概率为多少?(2)现年25岁的这种动物活到30岁的概率为多少?3、某生物制剂公司以箱养的方式培育一批新品种菌苗,每箱有40株菌苗若某箱菌苗失活率大于10%,则需对该箱菌苗喷洒营养剂某日工作人员随机抽检20箱菌苗,结果如表:箱数625424每箱中失活菌苗株数012356(1)抽检的20箱平均每箱有多少株失活菌苗?(2)该日在这批新品种菌苗中随机抽取一箱,记事件A为:该箱需要喷洒营养剂请估计事件A的概率4、一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的频率是,求从袋中取出黑球的个数5、如图,转盘被等分成六个扇形,并在上面依次写上数字1,2,3,4,5,6(1)若自由转动转盘,当它停止转动时,指针指向奇数区域的概率是多少?(2)求指针指向的数字能被3整除的概率-参考答案-一、单选题1、A【分析】根据必然事件、随机事件、不可能事件的定义逐项判断即可得【详解】解:A、“正数大于负数”是必然事件,此项符合题意;B、“下周二,温州的天气是阴天”是随机事件,此项不符题意;C、“在一个只装有白球的袋子中摸出一个红球”是不可能事件,此项不符题意;D、“在一张纸上任意画两条线段,这两条线段相交”是随机事件,此项不符题意;故选:A【点睛】本题考查了必然事件、随机事件、不可能事件,熟练掌握各定义是解题关键2、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案【详解】解:在不透明的布袋中装有1个白球,2个红球,3个黑球,从袋中任意摸出一个球,摸出的球是红球的概率是:故选:B【点睛】此题考查了概率公式的应用注意概率=所求情况数与总情况数之比3、A【分析】根据概率公式计算即可【详解】解:袋中装有3个红球和5个绿球共8个球,从袋中随机摸出1个球是红球的概率为,故选:A【点睛】此题考查了概率的计算公式,正确掌握计算公式是解题的关键4、D【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】解:根据题意可得:个不透明的袋子中有2个红球、3个黄球和4个蓝球,共9个,从袋子中随机摸出一个球,它是红色球的概率为 ,故选:D【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)5、C【分析】根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率本题球的总数为1+2=3,红球的数目为1【详解】解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到红球的概率是:1÷3=故选:C【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=6、A【分析】如果一个事件的发生有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率 利用概率公式直接计算即可得到答案【详解】解:抛掷一枚分别标有1,2,3,4,5,6的正方体骰子,骰子落地时朝上的数为偶数的可能性有种,而所有的等可能的结果数有种,所以骰子落地时朝上的数为偶数的概率是 故选A【点睛】本题考查了简单随机事件的概率,掌握概率公式是解本题的关键.7、D【分析】用出现偶数朝上的结果数除以所有等可能的结果数即可得【详解】解:掷小正方体后共有6种等可能结果,其中朝上一面的数字出现偶数的有2、4、6这3种可能,朝上一面的数字出现偶数的概率是,故选:D【点睛】本题考查了概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数8、A【分析】根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解【详解】解:袋中有白球3个,取到白球的可能性较大,袋中的白球数量大于红球数量,即袋中红球的个数可能是2个或2个以下故选:A【点睛】本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等9、D【分析】根据事先能肯定它一定会发生的事件称为必然事件依次判断即可【详解】解:A. 水中捞月不可能发生,是不可能事件,不符合题意;B. 抛掷一枚质地均匀的硬币,正面向上,是随机事件,不符合题意;C. 打开电视,正在播广告,是随机事件,不符合题意;D. 如果a、b都是实数,那么abba,是必然事件,符合题意;故选:D【点睛】本题考查事件发生的可能性大小事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件10、A【分析】先找出从中任选三条的所有可能的结果,再根据三角形的三边关系定理找出能组成三角形的结果,然后利用概率公式即可得【详解】解:由题意,从这4条线段中任选三条共有4种结果,即、,由三角形的三边关系定理可知,能组成三角形的有2种结果,即和,则所求的概率为,故选:A【点睛】本题考查了求概率,熟练掌握等可能性下的概率计算方法是解题关键二、填空题1、【分析】根据概率公式直接计算即可解答【详解】解:从中随机抽出一张牌,牌面所有可能出现的结果由4种,且它们出现的可能性相等,其中出现3的倍数的情况有1种, P(牌面是3的倍数)故答案为:【点睛】此题考查了概率公式的运用,解题的关键是确定整个事件所有可能的结果,难度不大2、【分析】随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数【详解】解:由题意得,共有种可能情况,其中能打开锁的情况有2种,故一次打开锁的概率为:,故答案为:【点睛】本题考查概率,熟练掌握概率公式是解题关键3、m+n3【分析】根据概率公式求出摸到黄球和摸不到黄球的概率,再根据P(A)2P(B),列出关系式,然后求解即可得出答案【详解】解:一个不透明的袋中装有6个黄球,m个红球,n个白球,任意摸出一个球,是黄球的概率P(A),摸出的球不是黄球的概率P(B)P(A)2P(B),m+n3,故答案为:m+n3【点睛】本题主要考查了简单的概率计算,解题的关键在于能够熟练掌握概率计算公式.4、【分析】设这种动物出生时的数量为 ,则活到20岁的数量为 ,活到25岁的数量为 ,求出活到25岁的数量与活到20岁的数量的比值,即可求解【详解】解:设这种动物出生时的数量为 ,则活到20岁的数量为 ,活到25岁的数量为 ,现年20岁的这种动物活到25岁的概率是 故答案为:【点睛】本题主要考查了计算概率,熟练掌握概率的计算方法是解题的关键5、【分析】卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,再根据概率公式=满足条件的样本个数总体的样本个数,可求出最终结果【详解】解:卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,根据概率公式,(轴对称图形)故答案为:【点睛】本题主要考查概率问题,属于基础题,掌握轴对称图形的性质以及概率公式是解题关键三、解答题1、(1)小皮球停留在黑色方砖上的概率是,小皮球停留在白色方砖上的概率是;(2)小皮球停留在黑色方砖上的概率大,要使这两个概率相等,应改变第二行第4列中的方砖颜色,黑色方砖改为白色方砖【分析】首先审清题意,明确所求概率为哪两部分的比值,再分别计算其面积,最后相比计算出概率【详解】解:(1)由图可知:共18块方砖,其中白色8块,黑色10块,故小皮球停留在黑色方砖上的概率是;小皮球停留在白色方砖上的概率是(2)因为,所以小皮球停留在黑色方砖上的概率大于停留在白色方砖上的概率 要使这两个概率相等,应改变第二行第4列中的方砖颜色,黑色方砖改为白色方砖【点睛】此题考查了几何概率,用到的知识点为:概率=所求情况数与总情况数之比,解题的关键是掌握概率公式2、(1)现年20岁的这种动物活到25岁的概率为0.625;(2)现年25岁的这种动物活到30岁的概率为0.6【分析】设这种动物有x只,根据概率的定义,用活到25岁的只数除以活到20岁的只数可得到现年20岁的这种动物活到25岁的概率;用活到30岁的只数除以活到25岁的只数可得到现年25岁的这种动物活到30岁的概率【详解】解:设这种动物有x只,则活到20岁的只数为08x,活到25岁的只数为05x,活到30岁的只数为03x (1)现年20岁的这种动物活到25岁的概率为0625 (2)现年25岁的这种动物活到30岁的概率为06【点睛】本题考查了概率的计算,正确理解概率的含义是解决本题的关键概率等于所求情况数与总情况数之比3、(1)抽检的20箱平均每箱有2.9株失活菌苗;(2)事件A的概率为【分析】(1)根据题意及表格可直接进行求解;(2)由题意知当每箱中失活菌苗株数为40×10=4株的时候需喷洒营养剂,然后根据表格及概率公式可直接进行求解【详解】解:(1)由表格得:(株);答:抽检的20箱平均每箱有2.9株失活菌苗;(2)由题意得:40×10=4株,当每箱中失活菌苗株数为4株时,则需喷洒营养剂,即事件A的概率为【点睛】本题主要考查概率,熟练掌握概率的求解是解题的关键4、2个【分析】首先设从袋中取出个黑球,根据题意得方程,继而求得答案【详解】解:设从袋中取出个黑球,根据题意得:,解得:,经检验,是原分式方程的解,答:从袋中取出黑球的个数为2个【点睛】此题考查了概率公式的应用,熟练掌握概率所求情况数与总情况数之比是解题的关键5、(1);(2)【分析】(1)根据题意得:奇数为1、3、5,有3个,然后根据概率公式即可求解;(2)根据题意得:能被3整除的数为3、6,有2个,然后根据概率公式即可求解【详解】解:(1)奇数为1、3、5,有3个,P(指针指向奇数区域) ;(2)能被3整除的数为3、6,有2个,P(指针指向的数字能被3整除) 【点睛】本题主要考查了求概率,熟练掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率 是解题的关键