2021-2022学年度2022年沪科版九年级数学下册专题攻克-(A)卷(含答案及详解).docx
-
资源ID:28149650
资源大小:1.01MB
全文页数:23页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年度2022年沪科版九年级数学下册专题攻克-(A)卷(含答案及详解).docx
· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·2022年沪科版九年级数学下册专题攻克 (A)卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定2、下面的图形中既是轴对称图形又是中心对称图形的是( )ABCD3、如图,四边形ABCD内接于O,若ADC=130°,则AOC的度数为( )A25°B80°C130°D100°4、下列图形中,既是中心对称图形也是轴对称图形的是( )ABCD5、如图,点P是等边三角形ABC内一点,且PA3,PB4,PC5,则APB的度数是( )A90°B100°C120°D150°6、如图是由5个相同的小正方体搭成的几何体,它的左视图是( )ABCD7、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是( )ABCD8、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为( )A10B12C15D189、下列语句判断正确的是()A等边三角形是轴对称图形,但不是中心对称图形· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·B等边三角形既是轴对称图形,又是中心对称图形C等边三角形是中心对称图形,但不是轴对称图形D等边三角形既不是轴对称图形,也不是中心对称图形10、在中,cm,cm以C为圆心,r为半径的与直线AB相切则r的取值正确的是( )A2cmB2.4cmC3cmD3.5cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知圆O的圆心到直线l的距离为2,且圆的半径是方程x25x+60的根,则直线l与圆O的的位置关系是_2、皮影戏是一种以兽皮或纸板做成的人物剪影,在灯光照射下用隔亮布进行表演的民间戏剧表演者在幕后操纵剪影、演唱,或配以音乐,具有浓厚的乡土气息“皮影戏”中的皮影是_(填写“平行投影”或“中心投影”)3、如图,过O外一点P,作射线PA,PB分别切O于点A,B,点C在劣弧AB上,过点C作O的切线分别与PA,PB交于点D,E则_度4、已知A的半径为5,圆心A(4,3),坐标原点O与A的位置关系是_5、一个五边形共有_条对角线三、解答题(5小题,每小题10分,共计50分)1、如图1,在中,点D为AB边上一点(1)若,则_;(2)如图2,将线段CD绕着点C逆时针旋转90°得到线段CE,连接AE,求证:;(3)如图3,过点A作直线CD的垂线AF,垂足为F,连接BF直接写出BF的最小值2、如图,在方格纸中,已知顶点在格点处的ABC,请画出将ABC绕点C旋转180°得到的A'B'C'(需写出A'B'C'各顶点的坐标)3、如图,在中,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F(1)求的度数;· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(2)若,且,求DF的长4、如图,AB是O的直径,点D,E在O上,四边形BDEO是平行四边形,过点D作交AE的延长线于点C(1)求证:CD是O的切线(2)若,求阴影部分的面积5、在太原市创建国家文明城市的过程中,东东和南南积极参加志愿者活动,有下列三个志愿者工作岗位供他们选择:(每个工作岗位仅能让一个人工作)2个清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用,表示);1个宣传类岗位:垃圾分类知识宣传(用表示)(1)东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为_(2)若东东和南南各随机从三个岗位中选取一个报名,请你利用画树状图法或列表法求出他们恰好都选择同一类岗位的概率-参考答案-一、单选题1、C【分析】根据O的半径r=4,且点A到圆心O的距离d=5知d>r,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,d>r,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr2、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键3、D【分析】根据圆内接四边形的性质求出B的度数,根据圆周角定理计算即可【详解】解:四边形ABCD内接于O,B+ADC=180°,ADC=130°,B=50°,由圆周角定理得,AOC=2B=100°,故选:D【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键4、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意故选:A【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合5、D【分析】将绕点逆时针旋转得,根据旋转的性质得,则为等边三角形,得到,在中,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数【详解】解:为等边三角形,可将绕点逆时针旋转得,如图,连接,为等边三角形,在中,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·,为直角三角形,且,故选:D【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等6、B【分析】找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中【详解】从左面看,第一层有2个正方形,第二层左侧有1个正方形故选:B【点睛】本题考查了三视图的知识,熟知左视图是从物体的左面看得到的视图是解答本题的关键7、D【分析】根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),进行计算即可【详解】解:一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,抽到每个球的可能性相同,布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是,P(白球)故选:D【点睛】本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键8、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可【详解】解:由题意可得,解得,a=15经检验,a=15是原方程的解故选:C【点睛】本题利用了用大量试验得到的频率可以估计事件的概率关键是根据白球的频率得到相应的等量关系9、A【分析】根据等边三角形的对称性判断即可【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·等边三角形是轴对称图形,但不是中心对称图形,B,C,D都不符合题意;故选:A【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键10、B【分析】如图所示,过C作CDAB,交AB于点D,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r【详解】解:如图所示,过C作CDAB,交AB于点D,在RtABC中,AC=3cm,BC=4cm,根据勾股定理得:AB=5(cm),SABC=BCAC=ABCD,×3×4=×10×CD,解得:CD=2.4,则r=2.4(cm)故选:B【点睛】此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键二、填空题1、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O到直线l的距离为d,若dr,则直线与圆相交;若dr,则直线于圆相切;若dr,则直线与圆相离,从而得出答案【分析】解:x25x+60,(x2)(x3)0,解得:x12,x23,圆的半径是方程x25x+60的根,即圆的半径为2或3,当半径为2时,直线l与圆O的的位置关系是相切,当半径为3时,直线l与圆O的的位置关系是相交,综上所述,直线l与圆O的的位置关系是相切或相交故答案为:相切或相交【点睛】本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d与圆的半径大小关系完成判定2、中心投影【分析】根据平行投影和中心投影的定义解答即可【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:“皮影戏”中的皮影是中心投影故答案是中心投影【点睛】本题主要考查了平行投影和中心投影,中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影3、65【分析】连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,根据等量代换可得,代入求解即可【详解】解:如图所示:连接OA,OC,OB,PA、PB、DE与圆相切于点A、B、E,DO平分,EO平分,故答案为:65【点睛】题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键4、在A上【分析】先根据两点间的距离公式计算出OA,然后根据点与圆的位置关系的判定方法判断点O与A的位置关系【详解】解:点A的坐标为(4,3),OA=5,半径为5,OA=r,点O在A上故答案为:在A上【点睛】本题考查了点与圆的位置关系:点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,当点P在圆外dr;当点P在圆上d=r;当点P在圆内dr5、5【分析】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·由n边形的对角线有: 条,再把代入计算即可得【详解】解:边形共有条对角线,五边形共有条对角线故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键三、解答题1、(1)5(2)证明见解析(3)【分析】(1)过C作CMAB于M,根据等腰三角形的性质求出CM和DM,再根据勾股定理计算即可;(2)连BE,先证明,即可得到直角三角形ABE,利用勾股定理证明即可;(3)取AC中点N,连接FN、BN,根据三角形BFN中三边关系判断即可(1)过C作CMAB于M,在Rt中(2)连接BE,,,在Rt中· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·(3)取AC中点N,连接FN、BN,AF垂直CDAC中点N,三角形BFN中当B、F、N三点共线时BF最小,最小值为【点睛】本题考查等腰直角三角形的常用辅助线以及直角三角形斜边上的中线,解题的关键是根据等腰直角三角形作斜边垂线或者构造“手拉手模型”2、A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析【分析】先画出点A,B关于点C中心对称的点A',B',再连接A',B',C即可解题【详解】解: A关于点C中心对称的点A'(-1,-3),B关于点C中心对称的点B'(1,-1),C关于点C中心对称的点C'(-2,0),如图,A'B'C'即为所求作图形【点睛】本题考查中心对称图形,是基础考点,掌握相关知识是解题关键3、(1)45°;(2)【分析】(1)根据旋转的性质得,通过等量代换及三角形内角和得,根据四点共圆即可求得;(2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得【详解】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·解:(1)由旋转可知:,由三角形内角和定理得,点A,D,F,E共圆(2)连接EB,又,在中,【点睛】本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质4、(1)见详解;(2)【分析】(1)连接OD,由题意易得,则有ODB是等边三角形,然后可得AEO也为等边三角形,进而可得ODAC,最后问题可求证;(2)由(1)易得AE=ED,CED=OBD=60°,然后可得圆O的半径,进而可得扇形OED和OED的面积,则有弓形ED的面积,最后问题可求解【详解】(1)证明:连接OD,如图所示:四边形BDEO是平行四边形,ODB是等边三角形,OBD=BOD=60°,AOE=OBD=60°,· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·OE=OA,AEO也为等边三角形,EAO=DOB=60°,AEOD,ODC+C=180°,CDAE,C=90°,ODC=90°,OD是圆O的半径,CD是O的切线(2)解:由(1)得EAO=AOE=OBD=BOD=60°,EDAB,EAO=CED=60°,AOE+EOD+BOD=180°,EOD=60°,DEO为等边三角形, ED=OE=AE,CDAE,CED=60°,CDE=30°,设OED的高为h,【点睛】本题主要考查扇形面积公式、切线的判定定理及解直角三角形,熟练掌握扇形面积公式、切线的判定定理及解直角三角形是解题的关键5、(1);(2)【分析】(1)利用概率公式,即可求解;(2)根据题意画出树状图,得到共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,再利用概率公式,即可求解【详解】解:东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为(2)根据题意画图如下:共有6种等可能的情况数,其中他们恰好都选择同一类岗位的有2种,则他们恰好都选择同一类岗位的概率是【点睛】· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 内 · · · · · · · · · · · ·号学级年名姓· · · · · · 线 · · · · · · · · · · · · 封 · · · · · · · · · · · · 密 · · · · · · · · · · · · 外 · · · · · · · · · · · ·本题主要考查了利用画树状图法或列表法求概率,熟练掌握随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数;P(必然事件)=1;P(不可能事件)=0是解题的关键