2021-2022学年最新京改版八年级数学下册第十五章四边形专项攻克试题(含答案解析).docx
-
资源ID:28149943
资源大小:721.62KB
全文页数:25页
- 资源格式: DOCX
下载积分:9金币
快捷下载
会员登录下载
微信登录下载
三方登录下载:
微信扫一扫登录
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
2021-2022学年最新京改版八年级数学下册第十五章四边形专项攻克试题(含答案解析).docx
京改版八年级数学下册第十五章四边形专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在中,点,分别是,上的点,点,分别是,的中点,则的长为( )A4B10C6D82、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是( )A180°B220°C240°D260°3、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且DAE=B=80º,那么CDE的度数为( )A20ºB25ºC30ºD35º4、四边形的内角和与外角和的数量关系,正确的是()A内角和比外角和大180°B外角和比内角和大180°C内角和比外角和大360°D内角和与外角和相等5、如图,以O为圆心,长为半径画弧别交于A、B两点,再分别以A、B为圆心,以长为半径画弧,两弧交于点C,分别连接、,则四边形一定是( )A梯形B菱形C矩形D正方形6、如图,在ABC中,AC=BC=8,BCA=60°,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60°得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D47、如图,A+B+C+D+E+F的度数为()A180°B360°C540°D不能确定8、下列长度的三条线段与长度为4的线段首尾依次相连能组成四边形的是( )A1,1,2,B1,1,1C1,2,2D1,1,69、如图,将矩形纸片ABCD沿BD折叠,得到BCD,CD与AB交于点E,若140°,则2的度数为()A25°B20°C15°D10°10、下列A:B:C:D的值中,能判定四边形ABCD是平行四边形的是( )A1:2:3:4B1:4:2:3C1:2:2:1D3:2:3:2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个正多边形的内角和为540°,则它的一个外角等于 _2、若点P(m,2)与Q(4,2)关于原点对称,则m_3、如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=_4、在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是_5、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_三、解答题(5小题,每小题10分,共计50分)1、如图,是的中位线,延长到,使,连接求证:2、如图,四边形ABCD是平行四边形,且分别交对角线于点E、F,连接ED、BF(1)求证:四边形BEDF是平行四边形;(2)若AEEF,请直接写出图2中面积等于四边形ABCD的面积的的所有三角形3、如图,四边形ABCD是一个菱形绿草地,其周长为40m,ABC120°,在其内部有一个矩形花坛EFGH,其四个顶点恰好在菱形ABCD各边中点,现准备在花坛中种植茉莉花,其单价为30元/m2,则需投资资金多少元?( 取1.732)4、(1)先化简,再求值:(a+b)(ab)a(a2b),其中a1,b2;(2)如图,菱形ABCD中,ABAC,E、F分别是BC、AD的中点,连接AE、CF证明:四边形AECF是矩形5、如图1,在平面直角坐标系中,直线l1:ykx+b(k0)与x轴交于点A,与y轴交于点B(0,6),直线l2与x轴交于点C,与直线l1交于D(m,3),OC2OA,tanBAO(1)求直线l2的解析式(2)在线段DC上是否存在点P,使DAP的面积为?若存在,求出点P的坐标,若不存在,请说明理由(3)如图2,连接OD,将ODB沿直线AB翻折得到O'DB若点M为直线AB上一动点,在平面内是否存在点N,使得以B、O、M、N为顶点的四边形为菱形,若存在,直接写出N的坐标,若不存在,请说明理由-参考答案-一、单选题1、B【分析】根据三角形中位线定理得到PD=BF=6,PDBC,根据平行线的性质得到PDA=CBA,同理得到PDQ=90°,根据勾股定理计算,得到答案【详解】解:C=90°,CAB+CBA=90°,点P,D分别是AF,AB的中点,PD=BF=6,PD/BC,PDA=CBA,同理,QD=AE=8,QDB=CAB,PDA+QDB=90°,即PDQ=90°,PQ=10,故选:B【点睛】本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键2、C【分析】根据四边形内角和为360°及等边三角形的性质可直接进行求解【详解】解:由题意得:等边三角形的三个内角都为60°,四边形内角和为360°,;故选C【点睛】本题主要考查多边形内角和及等边三角形的性质,熟练掌握多边形内角和及等边三角形的性质是解题的关键3、C【分析】依题意得出AE=AB=AD,ADE=50°,又因为B=80°故可推出ADC=80°,CDE=ADC-ADE,从而求解【详解】ADBC,AEB=DAE=B=80°,AE=AB=AD,在三角形AED中,AE=AD,DAE=80°,ADE=50°,又B=80°,ADC=80°,CDE=ADC-ADE=30°故选:C【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得ADE的度数4、D【分析】直接利用多边形内角和定理分别分析得出答案【详解】解:A四边形的内角和与外角和相等,都等于360°,故本选项表述错误;B四边形的内角和与外角和相等,都等于360°,故本选项表述错误;C六四边形的内角和与外角和相等,都等于360°,故本选项表述错误;D四边形的内角和与外角和相等,都等于360°,故本选项表述正确故选:D【点睛】本题考查了四边形内角和和外角和,解题关键是熟记四边形内角和与外角和都是360°5、B【分析】根据题意得到,然后根据菱形的判定方法求解即可【详解】解:由题意可得:,四边形是菱形故选:B【点睛】此题考查了菱形的判定,解题的关键是熟练掌握菱形的判定方法菱形的判定定理:四条边都相等四边形是菱形;一组邻边相等的平行四边形是菱形;对角线垂直的平行四边形是菱形6、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60°,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60°,ECF=60°,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键7、B【分析】设BE与DF交于点M,BE与AC交于点N,根据三角形的外角性质,可得 ,再根据四边形的内角和等于360°,即可求解【详解】解:设BE与DF交于点M,BE与AC交于点N, , , 故选:B【点睛】本题主要考查了三角形的外角性质,多边形的内角和,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;四边形的内角和等于360°是解题的关键8、C【分析】将每个选项中的四条线段进行比较,任意三条线段的和都需大于另一条线段的长度,由此可组成四边形,据此解答【详解】解:A、因为1+1+2=4,所以不能构成四边形,故该项不符合题意;B、因为1+1+1<4,所以不能构成四边形,故该项不符合题意;C、因为1+2+2>4,所以能构成四边形,故该项符合题意;D、因为1+1+4=6,所以不能构成四边形,故该项不符合题意;故选:C【点睛】此题考查了多边形的构成特点:任意几条边的和大于另一条边长,正确理解多边形的构成特点是解题的关键9、D【分析】根据矩形的性质,可得ABD40°,DBC50°,根据折叠可得DBCDBC50°,最后根据2DB CDBA进行计算即可【详解】解:四边形ABCD是矩形,ABC90°,CDAB,ABD=140°,DBCABC-ABD=50°,由折叠可得DB CDBC50°,2DB CDBA50°40°10°,故选D【点睛】本题考查了长方形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出DBC和DBA的度数10、D【分析】两组对角分别相等的四边形是平行四边形,所以A和C是对角,B和D是对角,对角的份数应相等【详解】解:根据平行四边形的判定:两组对角分别相等的四边形是平行四边形,所以只有D符合条件故选:D【点睛】本题考查了平行四边形的判定,在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法二、填空题1、72°【分析】根据题意求得正多边形的边数,进而求得答案【详解】解:一个正多边形的内角和为540°,即由故答案为:【点睛】本题考查了正多边形的内角和和外角和公式,根据内角和公式求得边数是解题的关键2、4【分析】两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P1(-x,-y)【详解】解:因为点P(m,2)与Q(4,2)关于原点对称,所以m-4=0,即m=4,故答案为:4【点睛】本题考查平面内两点关于原点对称的点,属于基础题,掌握相关知识是解题关键3、6【分析】根据多边形内角和公式(n-2)×180°及多边形外角和始终为360°可列出方程求解问题【详解】解:由题意得:(n-2)×180°=360°×2,解得:n=6;故答案为6【点睛】本题主要考查多边形内角和及外角和,熟练掌握多边形的内角和公式及外角和是解题的关键4、 (3,-7)【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:在平面直角坐标系中,点P(-3,7)关于原点对称的点的坐标是(3,-7),故答案为:(3,-7)【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数5、5【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长10,斜边中线长为×105,故答案为 5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键三、解答题1、见解析【分析】由已知条件可得DF=AB及DFAB,从而可得四边形ABFD为平行四边形,则问题解决【详解】是的中位线DEAB,AD=DCDFABEF=DEDF=AB四边形ABFD为平行四边形AD=BFBF=DC【点睛】本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键当然本题也可以用三角形全等的知识来解决2、(1)证明见解析;(2)【分析】(1)先证明再证明可得从而有 于是可得结论;(2)先证明再证明,从而可得结论.【详解】证明:(1) 四边形ABCD是平行四边形, ,BEF=DFE, 四边形BEDF是平行四边形.(2)由(1)得: 四边形BEDF是平行四边形, 四边形ABCD是平行四边形,SADF=SDEC=SABF=SBEC=13SABCD.【点睛】本题考查的是平行四边形的判定与性质,熟练的运用一组对边平行且相等的四边形是平行四边形是证明的关键,第(2)问先确定面积为平行四边形ABCD的的三角形是解题的关键.3、2598元【分析】根据菱形的性质,先求出菱形的一条对角线,由勾股定理求出另一条对角线的长,由三角形的中位线定理,求出矩形的两条边,再求出矩形的面积,最后求得投资资金【详解】连接BD,AD相交于点O,如图:四边形ABCD是一个菱形,ACBD,ABC=120°,A=60°,ABD为等边三角形,菱形的周长为40m,菱形的边长为10m,BD10m,BO5m,在RtAOB中,m,AC2OAm,E、F、G、H分别是AB、BC、CD、DA的中点,EHBD 5m,EFAC5m,S矩形5×550m2,则需投资资金50×30=1500×1.7322598元【点睛】本题考查了二次根式的应用,勾股定理,菱形的性质,等边三角形的判定与性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质与定理是解题的关键4、(1),0;(2)证明见解析【分析】(1)根据整式的乘法运算法则先去括号,然后合并同类项化简,然后代入求解即可;(2)首先根据菱形的性质得到,然后根据E、F分别是BC、AD的中点,得出,根据一组对边平行且相等证明出四边形AECF是平行四边形,然后根据等腰三角形三线合一的性质得出,即可证明出四边形AECF是矩形【详解】(1)(a+b)(ab)a(a2b)将a1,b2代入得:原式;(2)如图所示,四边形ABCD是菱形,且,又E、F分别是BC、AD的中点,四边形AECF是平行四边形,ABAC,E是BC的中点,即,平行四边形AECF是矩形【点睛】此题考查了整式的混合运算,代数式求值问题,菱形的性质和矩形的判定,解题的关键是熟练掌握整式的混合运算法则,菱形的性质和矩形的判定定理5、(1);(2)(,2);(3)N点坐标为(,)、(,)、(0,0)或(,6)【分析】(1)由y轴截距以及正切值,可求出,则 A点坐标为(,0),因为OC2OA所以C点坐标为(,0 ),将D(m,3)代入,得D点坐标为( ,3),再将D(,3),C(,0 )代入,求得(2)设P点坐标为(a,),由题意可知DAP为,DAP的高为A点到直线CD的距离,过 A点做DC平行线交y轴于点E,由可知 ,将A(,0)代入,解得 ,故两线间的距离为,DAP的高为,由三角形面积= 底×高,有2,故有,进而即可求解;(3)如图所示,共有4个点满足条件,证明见解析【详解】(1)B(0,6),tanBAO令y=0,得A点坐标为(,0)OC2OAC点坐标为(,0)将D(m,3)代入D点坐标为(,3)将D(,3),C(,0)代入有得(2)设P点坐标为(a,),过A点做DC平行线交y轴于点EAE/DC将A(,0)代入得b=2故和间的距离为,即DAP的高为由三角形面积=底×高有有2故有化简得解得a=0(舍去)或a=,故P点坐标为(,2)(3)如图所示,可知BO=6,在B点上方截取BM1=6,过M1做BO平行线,过O做BM1平行线,两平行线相交于N1由作图步骤可知BON1M1为菱形,由菱形性质可得N1坐标为(,)如图所示,可知BO=6,在B点下方截取BM2=6,过M2做BO平行线,过O做BM2平行线,两平行线相交于N2由作图步骤可知BON2M2为菱形,由菱形性质可得N2坐标为(,)如图所示,可知BO=6,在B点下方截取BN3=6,过N3做BO平行线,过O做BN3平行线,两平行线相交于M3由作图步骤可知B N3M3O为菱形,由菱形性质可得N3坐标为(0,0)如图所示,可知BO=6,令BO做菱形其中一条对角线,过O做x轴平行线交直线AB于点M4,过B点做OM4平行线,过O点做直线AB平行线,两平行线相交于N4由作图步骤可知B M4ON4为菱形,由菱形性质可得N4坐标为(,6)综上所述N点坐标为(,)、(,)、(0,0)或(,6)【点睛】本题考查了一次函数的图象及其性质,菱形的判定,熟练掌握并应用菱形的性质是解第三问的关键:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.菱形具有平行四边形的一切性质.菱形是轴对称图形,对称轴是两条对角线所在的直线.利用菱形的性质可证线段相等,角相等